Dual-Path Attention-Based Sentiment Analysis Model
NOTIFICATION:
Note : Model need interface.
Note: The README still need a further revise and implements.
Note: The test parameter need to be appointed.
TO-DO:
- Combine transfer study. (BERT, XLNet)
- Ablation Study. (Next week)
- Need more comprehensive analysis of the model's sensitivity to different parameter settings.
IMDB
Yelp
Amazon
- To train the baseline model :
python run.py --model=BLAT --embedding=random --word True
Without transfer learning,seed:88 (M40单卡):
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
BiLSTM | 0.5098 | 0.7081 | 0.6316 | 0.5061 | 0.5889 |
TextCNN | 0.8702 | 0.9681 | 0.7735 | 0.8947 | 0.87663 |
TextCNN_Att | 0.8644 | 0.9639 | 0.7137 | 0.8756 | 0.8544 |
TextRCNN | 0.7480 | 0.9267 | 0.7186 | 0.8377 | 0.8078 |
Transformer | 0.7746 | 0.9344 | 0.7110 | 0.8093 | 0.8073 |
DPCNN | 0.8742 | 0.9723 | 0.7796 | 0.9058 | 0.8830 |
Fasttext | 0.8766 | 0.9534 | 0.7380 | 0.8517 | 0.8549 |
Fastformer | 0.8718 | 0.9664 | 0.7739 | 0.8813 | 0.8734 |
BLAT | 0.8630 | 0.9731 | 0.7861 | 0.9119 | 0.8835 |
With transfer learning(seed 88)(M40单卡):
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
bert(bz=64, S) | 0.8721 | 0.9562 | 0.7495 | 0.8446(.4,DP) | |
xlnet(bz=64,S) | 0.8955 | 0.9572 | 0.7541 | 0.8601 | 0.8667 |
BLAT(bert) | 0.8954 | 0.9744 | 0.7915 | 0.9188 | 0.8950 |
BLAT(xlnet) | 0.8874 | 0.9748 | 0.7892 | 0.9215 | 0.8932 |
seed:3407,bz=128, 2080ti,单卡
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
BLAT | 0.8772 | 0.9729 | 0.7861 | 0.9127 | 0.8872 |
BLAT(bert) | 0.9000 | 0.9749 | 0.7880 | 0.9212 | 0.8960 |
BLAT(xlnet) | 0.8884 | 0.9751 | 0.7891 | 0.9238 | 0.8941 |
BLAT(bert-large) | 0.8914 | 0.9759 | 0.7915 | 0.9226 | 0.8954 |
BLAT(xlnet-large) | 0.8860 | 0.9761 | 0.7872 | 0.9209 | 0.8926 |
Ablation Study: seed=88, bz=128, 单卡(M40)
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
Fastformer(bert_base) | 0.8734 | 0.9661 | 0.7732 | 0.8834 | 0.8740 |
TextCNN(bert_base) | 0.9054 | 0.9758 | 0.7930 | 0.9213 | 0.8989 |
Ablation Study: seed=3407, bz=128, 单卡(M40)
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
Fastformer(bert_base) | 0.8806 | 0.9664 | 0.7739 | 0.8827 | 0.8759 |
TextCNN(bert_base) | 0.8628 | 0.9761 | 0.7930 | 0.9210 | 0.8882 |
seed:88, bz=64, 2080ti, 多卡
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
bert-large | |||||
xlnet-large |
seed:88, bz=64, 2080ti, 多卡
Model | IMDB | Yelp-2 | Yelp-5 | Amazon | Average |
---|---|---|---|---|---|
bert-base+extract |
Please cite our paper if you use it in your work:
@inproceedings{,
title={{}: },
author={},
booktitle={},
year={}
}