/sgtn

Primary LanguagePython

SGTN: Privacy-Preserving Visual Content Tagging using Graph Transformer Networks

This project implements Privacy-Preserving Visual Content Tagging using Graph Transformer Networks.

Requirements

Please, install the following packages

  • numpy
  • pytorch (1.*)
  • torchnet
  • torchvision
  • tqdm

Download best checkpoints

  • SGTN on MS-COCO - checkpoint/coco/SGTN_N_86.6440.pth.tar (GDrive)
  • SGTN on PP-MS-COCO - checkpoint/coco/SGTN_A_85.5768.pth.tar (GDrive)

Performance

Method mAP CP CR CF1 OP OR OF1
CNN-RNN 61.2 - - - - - -
SRN 77.1 81.6 65.4 71.2 82.7 69.9 75.8
Baseline(ResNet101) 77.3 80.2 66.7 72.8 83.9 70.8 76.8
Multi-Evidence 80.4 70.2 74.9 85.2 72.5 78.4
ML-GCN 82.4 84.4 71.4 77.4 85.8 74.5 79.8
SGTN 86.6 77.2 82.2 79.6 76.0 82.6 77.2
ML-GCN (PP) 80.3 84.6 68.1 75.5 85.2 72.4 78.3
SGTN (PP) 85.6 85.3 75.3 79.9 85.3 78.7 81.8

Performance comparisons on COCO and PP-COCO. SGTN outperforms baselines with large margins. PP denotes the use of anonymised dataset.

SGTN on COCO

python sgtn.py data/coco --image-size 448 --workers 8 --batch-size 32 --lr 0.03 --learning-rate-decay 0.1 --epoch_step 80 --embedding data/coco/coco_glove_word2vec.pkl --adj-dd-threshold 0.4 --device_ids 0

How to cite this work?

@inproceedings{Vu:ACMMM:2020,
	author = {Vu, Xuan-Son and Le, Duc-Trong and Edlund, Christoffer and Jiang, Lili and Nguyen, Hoang D.},
	title = {Privacy-Preserving Visual Content Tagging using Graph Transformer Networks},
	booktitle = {ACM International Conference on Multimedia},
	series = {ACM MM '20},
	year = {2020},
	publisher = {ACM},
	address = {New York, NY, USA}
}

Reference

This project is based on the following implementations: