/HPE_5D

Head Pose Estimation Based on 5D Rotation Representation

Primary LanguagePython

Paper titled: Head Pose Estimation Based on 5D Rotation Representation [paper]

  • Fig. Snapshots of 7 different views from one sequence in the CMU Panoptic val-set dataset.

Evaluation of the MAE for different methods on the CMU dataset

Method R RR Yaw Pitch Roll MAE
Narrow range: -90° < yaw < 90°
DirectMHP [Zhou et al., 2023] E 5.86 8.25 7.25 7.12
DirectMHP [Zhou et al., 2023] E 5.75 8.01 6.96 6.91
5DResNet (ours) 5D 5.01 6.89 6.00 5.97
Full range: -180° < yaw < 180°
Cobo et al. [Cobo et al., 2024] E - - - 10.47
Viet et al. [Viet et al., 2021] RM 9.55 11.29 8.32 9.72
Cobo et al. [Cobo et al., 2024] Q - - - 9.32
DirectMHP [Zhou et al., 2023] E 7.38 8.56 7.47 7.80
DirectMHP [Zhou et al., 2023] E 7.32 8.54 7.35 7.74
WHENet [Zhou et al., 2020] E 8.51 7.67 6.78 7.65
Cobo et al. [Cobo et al., 2024] 6D - - - 7.45
5DResNet (ours) 5D 5.96 7.68 6.28 6.64

RR: Rotation Representation. R: Retraining.

Dataset

  • CMU Panoptic from here for the full range angles.

Training:

python3 train_5D_Resnet.py

Testing:

python3 test_Resnet.py

Citing

@inproceedings{algabri2024head,
  title={Head Pose Estimation Based on 5D Rotation Representation},
  author={Algabri, Redhwan and Lee, Sungon},
  booktitle={2024 IEEE Symposium on Wireless Technology \& Applications (ISWTA)},
  pages={195--199},
  year={2024},
  organization={IEEE}
}