GoJieba English
GoJieba是"结巴"中文分词的Golang语言版本。
- 支持多种分词方式,包括: 最大概率模式, HMM新词发现模式, 搜索引擎模式, 全模式
- 核心算法底层由C++实现,性能高效。
- 无缝集成到 bleve 到进行搜索引擎的中文分词功能。
- 字典路径可配置,NewJieba(...string), NewExtractor(...string) 可变形参,当参数为空时使用默认词典(推荐方式)
go get github.com/yanyiwu/gojieba
分词示例
package main
import (
"fmt"
"strings"
"github.com/yanyiwu/gojieba"
)
func main() {
var s string
var words []string
use_hmm := true
x := gojieba.NewJieba()
defer x.Free()
s = "我来到北京清华大学"
words = x.CutAll(s)
fmt.Println(s)
fmt.Println("全模式:", strings.Join(words, "/"))
words = x.Cut(s, use_hmm)
fmt.Println(s)
fmt.Println("精确模式:", strings.Join(words, "/"))
s = "比特币"
words = x.Cut(s, use_hmm)
fmt.Println(s)
fmt.Println("精确模式:", strings.Join(words, "/"))
x.AddWord("比特币")
s = "比特币"
words = x.Cut(s, use_hmm)
fmt.Println(s)
fmt.Println("添加词典后,精确模式:", strings.Join(words, "/"))
s = "他来到了网易杭研大厦"
words = x.Cut(s, use_hmm)
fmt.Println(s)
fmt.Println("新词识别:", strings.Join(words, "/"))
s = "小明硕士毕业于**科学院计算所,后在日本京都大学深造"
words = x.CutForSearch(s, use_hmm)
fmt.Println(s)
fmt.Println("搜索引擎模式:", strings.Join(words, "/"))
s = "长春市长春药店"
words = x.Tag(s)
fmt.Println(s)
fmt.Println("词性标注:", strings.Join(words, ","))
s = "区块链"
words = x.Tag(s)
fmt.Println(s)
fmt.Println("词性标注:", strings.Join(words, ","))
s = "长江大桥"
words = x.CutForSearch(s, !use_hmm)
fmt.Println(s)
fmt.Println("搜索引擎模式:", strings.Join(words, "/"))
wordinfos := x.Tokenize(s, SearchMode, !use_hmm)
fmt.Println(s)
fmt.Println("Tokenize:", wordinfos)
}
我来到北京清华大学
全模式: 我/来到/北京/清华/清华大学/华大/大学
我来到北京清华大学
精确模式: 我/来到/北京/清华大学
比特币
精确模式: 比特/币
比特币
添加词典后,精确模式: 比特币
他来到了网易杭研大厦
新词识别: 他/来到/了/网易/杭研/大厦
小明硕士毕业于**科学院计算所,后在日本京都大学深造
搜索引擎模式: 小明/硕士/毕业/于/**/科学/学院/科学院/**科学院/计算/计算所/,/后/在/日本/京都/大学/日本京都大学/深造
长春市长春药店
词性标注: 长春市/ns,长春/ns,药店/n
区块链
词性标注: 区块链/nz
长江大桥
搜索引擎模式: 长江/大桥/长江大桥
长江大桥
Tokenize: [{长江 0 6} {大桥 6 12} {长江大桥 0 12}]
See example in jieba_test, extractor_test
package main
import (
"fmt"
"os"
"github.com/blevesearch/bleve"
"github.com/yanyiwu/gojieba"
_ "github.com/yanyiwu/gojieba/bleve"
)
func Example() {
INDEX_DIR := "gojieba.bleve"
messages := []struct {
Id string
Body string
}{
{
Id: "1",
Body: "你好",
},
{
Id: "2",
Body: "世界",
},
{
Id: "3",
Body: "亲口",
},
{
Id: "4",
Body: "交代",
},
}
indexMapping := bleve.NewIndexMapping()
os.RemoveAll(INDEX_DIR)
// clean index when example finished
defer os.RemoveAll(INDEX_DIR)
err := indexMapping.AddCustomTokenizer("gojieba",
map[string]interface{}{
"dictpath": gojieba.DICT_PATH,
"hmmpath": gojieba.HMM_PATH,
"userdictpath": gojieba.USER_DICT_PATH,
"type": "gojieba",
},
)
if err != nil {
panic(err)
}
err = indexMapping.AddCustomAnalyzer("gojieba",
map[string]interface{}{
"type": "gojieba",
"tokenizer": "gojieba",
},
)
if err != nil {
panic(err)
}
indexMapping.DefaultAnalyzer = "gojieba"
index, err := bleve.New(INDEX_DIR, indexMapping)
if err != nil {
panic(err)
}
for _, msg := range messages {
if err := index.Index(msg.Id, msg); err != nil {
panic(err)
}
}
querys := []string{
"你好世界",
"亲口交代",
}
for _, q := range querys {
req := bleve.NewSearchRequest(bleve.NewQueryStringQuery(q))
req.Highlight = bleve.NewHighlight()
res, err := index.Search(req)
if err != nil {
panic(err)
}
fmt.Println(res)
}
}
func main() {
Example()
}
Output:
2 matches, showing 1 through 2, took 360.584µs
1. 2 (0.423287)
Body
<mark>世界</mark>
2. 1 (0.423287)
Body
<mark>你好</mark>
2 matches, showing 1 through 2, took 131.055µs
1. 4 (0.423287)
Body
<mark>交代</mark>
2. 3 (0.423287)
Body
<mark>亲口</mark>
See example in bleve_test
Unittest
go test ./...
Benchmark
go test -bench "Jieba" -test.benchtime 10s
go test -bench "Extractor" -test.benchtime 10s