VEDAS is a RDF store engine that be able to query with SPARQL and run on single GPU.
- ModernGPU
- Thrust
- Raptor RDF Syntax Library
- Rasqal RDF Query Library
make
First, you should prepare the RDF data in N-triple format or .nt extension. vdBuild is used for load the triple data into VEDAS internal format
./vdBuild <database_name> <path_to_nt_file>
For example
./vdBuild watdiv500M /home/username/data/watdiv/watdiv.500M.nt
The internal database file <database_name>.vdd and <database_name>.vds will be generated.
VEDAS support query only from file. The vdQuery is the query engine that load the RDF data and wait for the input file.
./vdQuery <database_name>
The prompt will shown after finish loaded data. To submit the query, use command sparql <path_to_sparql_query_file> and exit to terminate the program.
You can use -sparql-path option to speccify the sparql file path.
./vdQuery <database_name> -sparql-path=<path_to_sparql_query_file>
After load the database with vdBuild, it will construct the graph vertex and edge files, named tools/nodes.txt and edges/nodes.txt. You can generate the GraphML file with the following command
cd tools
pip install -r requirements.txt
python graphml.py
The output file triple-data.graphml can opened with any supported software e.g. Graphia, Gephi etc.
@Article{vedas2021,
author={Makpaisit, Pisit and Chantrapornchai, Chantana},
title={VEDAS: an efficient GPU alternative for store and query of large RDF data sets},
journal={Journal of Big Data},
year={2021},
month={Sep},
day={16},
volume={8},
number={1},
pages={125},
issn={2196-1115},
doi={10.1186/s40537-021-00513-y},
url={https://doi.org/10.1186/s40537-021-00513-y}
}
@article{makpisit2023sparql,
title={SPARQL Query Optimizations for GPU RDF Stores},
author={Makpisit, Pisit and others},
journal={ECTI Transactions on Computer and Information Technology (ECTI-CIT)},
volume={17},
number={2},
pages={235--244},
year={2023}
}