/embedding-service

Primary LanguageJavaScriptMIT LicenseMIT

Minimal Embedding Service

This is a minimal embedding service that allows you to embed any content. It is built using Express.js and transformers.js.

Installation

  1. Clone the repository
  2. Run docker build -t embedding_server .
  3. Run docker run -v $(pwd)/volume:/usr/src/app/node_modules/@xenova/transformers/.cache -p 3000:3000 -e MODEL='YourModel' -e API_KEY='YourSuperSecureApiKey' embedding_server

Example: docker run -v $(pwd)/volume:/usr/src/app/node_modules/@xenova/transformers/.cache -p 3000:3000 -e MODEL='Xenova/multilingual-e5-base' embedding_server

If you do not set an API_KEY in the docker run commmand (for example docker run -p 3000:3000 embedding_server) a random API_KEY will be generated automatically and printed to the console.

If you do not set a Model in the docker run commmand (for example docker run -p 3000:3000 embedding_server) the model Xenova/all-MiniLM-L6-v2 will be used automatically.

Usage

To embed content, make a POST request to http://localhost:3000/v1/embeddings with the following body:

{
  "input": "Your text string goes here"
}

or

{
  "input": ["Your", "text", "array", "goes", "here"]
}

curl example:

curl http://localhost:3000/v1/embeddings \ 
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YourSuperSecureApiKey" \
  -d '{
    "input": "Your text string goes here",
  }'

You can also specify the model to use by setting the MODEL environment variable. The default model is Xenova/all-MiniLM-L6-v2. The model has to be a ONNX model, compatible with transformers.js.

Loading remote models

Currently loading remote models is disabled by default. To enable it, change line 35 env.allowRemoteModels = false; to true in the server.js file. This will allow the server to load models from the Hugging Face model hub.