A neural network for extracting sentiments from tweet data. Uses torch
, transformers
, and BERT. Based on BERT Base Uncased Using PyTorch and uses data from the Tweet Sentiment Extraction competition on Kaggle.
To run code and notebooks in a Spell workspace:
spell jupyter --lab \
--github-url https://github.com/spellml/tweet-sentiment-extraction.git \
--env KAGGLE_USERNAME=YOUR_USERNAME \
--env KAGGLE_KEY=YOUR_KEY \
tweet-sentiment-extraction
To execute the training scripts in a Spell run:
spell run \
--machine-type t4 \
--github-url https://github.com/spellml/tweet-sentiment-extraction.git \
--pip transformers --pip tokenizers --pip kaggle \
--env KAGGLE_USERNAME=YOUR_USERNAME \
--env KAGGLE_KEY=YOUR_KEY \
--tensorboard-dir /spell/tensorboards/model_1 \
"chmod +x /spell/scripts/download_data.sh /spell/scripts/upgrade_env.sh; /spell/scripts/download_data.sh; /spell/scripts/upgrade_env.sh; python /spell/models/model_1.py"
spell run \
--machine-type t4 \
--github-url https://github.com/spellml/tweet-sentiment-extraction.git \
--pip transformers --pip tokenizers --pip kaggle \
--env KAGGLE_USERNAME=YOUR_USERNAME \
--env KAGGLE_KEY=YOUR_KEY \
--tensorboard-dir /spell/tensorboards/model_2 \
"chmod +x /spell/scripts/download_data.sh; chmod +x /spell/scripts/upgrade_env.sh; /spell/scripts/download_data.sh; /spell/scripts/upgrade_env.sh; python /spell/models/model_2.py"