This repository contains the code for Direct Molecular Conformation Generation (DMCG), which is introduced in TMLR2022.
We recommend building a Docker image with the Dockerfile.
After building and starting the docker, you can run
cd /workspace
git clone https://github.com/DirectMolecularConfGen/DMCG
cd DMCG
pip install -e .
You may possibly need to run pip install setuptools==59.5.0
if you met problems with the setuptools
module.
If you want to develop it locally using conda venv, please refer to Line 27 to Line 36 in Dockerfile to build a virtual conda environment.
Download the qm9_processed.7z and drugs_processed.7z from this url
Download rdkit_folder.tar.gz from this url and untar this file by tar -xvf rdkit_folder.tar.gz
The first time you run this code, you should specify the data path with --base-path
, and the code will binarize data into binarized format.
# Training. We place the unzipped data folder in /workspace/drugs_processed
DATA="/workspace/drugs_processed"
bash run_training.sh -c 0 --dropout 0.1 --use-bn --no-3drot \
--aux-loss 0.2 --num-layers 6 --lr 2e-4 --batch-size 128 \
--vae-beta-min 0.0001 --vae-beta-max 0.05 --reuse-prior \
--node-attn --data-split confgf --pred-pos-residual --grad-norm 10 \
--dataset-name drugs --remove-hs --shared-output \
--ang-lam 0 --bond-lam 0 --base-path ${DATA}
# Inference. We recommend using checkpoint_94.pt
CKPT="/model/confgen/vae/vaeprior-dropout-0.1-usebn-no3drot-auxloss-0.2-numlayers-6-lr-2e4-batchsize-128-vaebetamin-0.0001-vaebetamax-0.05-reuseprior-nodeattn-datasplit-confgf-predposresidual-gradnorm-10-datasetname-drugs-removehs-sharedoutput-anglam-0-bondlam-0-basepath-/workspace/drugs_processed/checkpoint_94.pt"
python evaluate.py --dropout 0.1 --use-bn --lr-warmup --use-adamw --train-subset \
--num-layers 6 --eval-from $CKPT --workers 20 --batch-size 128 \
--reuse-prior --node-attn --data-split confgf --dataset-name drugs --remove-hs \
--shared-output --pred-pos-residual --sample-beta 1.2
# Training. We place the unzipped data folder in /workspace/qm9_processed
bash run_training.sh --dropout 0.1 --use-bn --no-3drot \
--aux-loss 0.2 --num-layers 6 --lr 2e-4 --batch-size 128 \
--vae-beta-min 0.0001 --vae-beta-max 0.03 --reuse-prior \
--node-attn --data-split confgf --pred-pos-residual \
--dataset-name qm9 --remove-hs --shared-output \
--ang-lam 0.2 --bond-lam 0.1 --base-path $yourdatapath
# Inference. We recommend using checkpoint_94.pt
python evaluate.py --dropout 0.1 --use-bn --lr-warmup --use-adamw --train-subset \
--num-layers 6 --eval-from $CKPT --workers 20 --batch-size 128 \
--reuse-prior --node-attn --data-split confgf --dataset-name qm9 --remove-hs \
--shared-output --pred-pos-residual --sample-beta 1.2
We have provided the pretrained checkpoints and the corresponding logs on GoogleDrive, and you can compare your configurations with our provided logs (specifically, the row started with "Namespace") to reproduce our results.
If you find this work helpful in your research, please use the following BibTex entry to cite our paper.
@article{
zhu2022direct,
title={Direct Molecular Conformation Generation},
author={Jinhua Zhu and Yingce Xia and Chang Liu and Lijun Wu and Shufang Xie and Yusong Wang and Tong Wang and Tao Qin and Wengang Zhou and Houqiang Li and Haiguang Liu and Tie-Yan Liu},
journal={Transactions on Machine Learning Research},
year={2022},
url={https://openreview.net/forum?id=lCPOHiztuw},
note={}
}