TensoSDF: Roughness-aware Tensorial Representation for Robust Geometry and Material Reconstruction (SIGGRAPH 2024)
The method is based on NeRO, please refer to it to setup the environment. And then use pip to install the requirements.txt in this project.
cd TensoSDF
pip install -r requirements.txt
Download the TensoSDF synthetic dataset and the ORB real dataset. For the ORB dataset, We use the blender_LDR.tar.gz for training and ground_truth.tar.gz for evaluation.
Below take the "compressor" scene as an example:
# you need to modify the "dataset_dir" in configs/shape/syn/compressor.yaml first.
# reconstruct the geometry
python run_training.py --cfg configs/shape/syn/compressor.yaml
# evaluate the geometry reconstruction results via normal MAE metric
python eval_geo.py --cfg configs/shape/syn/compressor.yaml
# extract mesh from the model
python extract_mesh.py --cfg configs/shape/syn/compressor.yaml
Intermediate results will be saved at data/train_vis
. Models will be saved at data/model
. NVS results will be saved at data/nvs
. Extracted mesh will be saved at data/meshes
.
# you need to modify the "dataset_dir" in configs/mat/syn/compressor.yaml first.
# estimate the material
python run_training.py --cfg configs/mat/syn/compressor.yaml
# evaluate the relighting results using the estimated materials via PSNR, SSIM and LPIPS metrics
python eval_mat.py --cfg configs/shape/syn/compressor.yaml --blender your_blender_path --env_dir your_environment_lights_dir
Intermediate results will be saved at data/train_vis
. Models will be saved at data/model
. Extracted materials will be saved at data/materials
. Relighting results will be saved at data/relight
.
Below take the "teapot" scene as an example:
# you need to modify the "dataset_dir" in configs/shape/orb/teapot.yaml first.
# reconstruct the geometry
python run_training.py --cfg configs/shape/orb/teapot.yaml
# extract mesh from the model
python extract_mesh.py --cfg configs/shape/orb/teapot.yaml
# evaluate the geometry reconstruction results via the CD metric
python eval_orb_shape.py --out_mesh_path data/meshes/teapot_scene006_shape-180000.ply --target_mesh_path your_ORB_GT_mesh_path
Intermediate results will be saved at data/train_vis
. Models will be saved at data/model
. Extracted mesh will be saved at data/meshes
.
# you need to modify the "dataset_dir" in configs/mat/orb/teapot.yaml first.
# estimate the material
python run_training.py --cfg configs/mat/orb/teapot.yaml
# extract the materials and relight with new environment lights
python eval_mat.py --cfg configs/mat/orb/teapot.yaml --blender your_blender_path --orb_relight_gt_dir your_ORB_GT_relighting_dir --orb_relight_env your_relighting_env_name --orb_blender_dir your_orb_dataset_dir
# evaluate the relighting results via PSNR, SSIM and LPIPS metrics
python eval_orb_relight.py --relight_dir your_relighting_results_dir --gt_dir your_GT_relighting_in_orb_dataset_dir
Intermediate results will be saved at data/train_vis
. Models will be saved at data/model
. Extracted materials will be saved at data/materials
. Relighting results will be saved at data/relight
.
@article{Li:2024:TensoSDF,
title={TensoSDF: Roughness-aware Tensorial Representation for Robust Geometry and Material Reconstruction},
author={Jia Li and Lu Wang and Lei Zhang and Beibei Wang},
journal ={ACM Transactions on Graphics (Proceedings of SIGGRAPH 2024)},
year = {2024},
volume = {43},
number = {4},
pages={150:1--13}
}