Version: 0.7.dev0
License: GNU General Public License
E-Mail: pyclustering@yandex.ru
PyClustering Wiki: https://github.com/annoviko/pyclustering/wiki
In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru or create an issue here.
Branch | master | 0.7.dev |
---|---|---|
Build (Linux) | ||
Build (Win) | ||
Code Coverage | ||
Code Quality |
- Python >= 3.4 windows 64-bit
- Python >= 3.4 linux 64-bit
- C++ 14 (MVS, GCC compilers)
- scipy, matplotlib, numpy, PIL
Index of packages for Windows:
Index of packages for Linux:
- sudo apt-get install python3-numpy
- sudo apt-get install python3-scipy
- sudo apt-get install python3-matplotlib
- sudo apt-get install python3-pil
Clustering algorithms (module pyclustering.cluster):
- Agglomerative [Python, C++]
- BIRCH [Python]
- CLARANS [Python]
- CURE [Python, C++]
- DBSCAN [Python, C++]
- HSyncNet [Python, C++]
- K-Means [Python, C++]
- K-Means++ [Python]
- K-Medians [Python, C++]
- K-Medoids [Python, C++]
- OPTICS [Python, C++]
- ROCK [Python, C++]
- SOM-SC [Python, C++]
- SyncNet [Python, C++]
- Sync-SOM [Python]
- X-Means [Python, C++]
Oscillatory networks and neural networks (module pyclustering.nnet):
- CNN (Chaotic Neural Network) [Python]
- fSync (Oscillatory network based on Landau-Stuart equation and Kuramoto model) [Python]
- HHN (Oscillatory network based on Hodgkin-Huxley model) [Python]
- Hysteresis Oscillatory Network [Python]
- LEGION (Local Excitatory Global Inhibitory Oscillatory Network) [Python, C++]
- PCNN (Pulse-Coupled Neural Network) [Python, C++]
- SOM (Self-Organized Map) [Python, C++]
- Sync (Oscillatory network based on Kuramoto model) [Python, C++]
- SyncPR (Oscillatory network for pattern recognition) [Python, C++]
- SyncSegm (Oscillatory network for image segmentation) [Python, C++]
Graph Coloring Algorithms (module pyclustering.gcolor):
- DSatur [Python]
- Hysteresis [Python]
- GColorSync [Python]
Travelling Salesman Problem Algorithms (module pyclustering.tsp):
- AntColony [Python, C++]
Containers (module pyclustering.container):
- KD Tree [Python, C++]
- CF Tree [Python]
The library contains examples for each algorithm and oscillatory network model:
Clustering examples: pyclustering/cluster/examples
Graph coloring examples: pyclustering/gcolor/examples
Oscillatory network examples: pyclustering/nnet/examples
Cluster allocation on FCPS dataset collection by DBSCAN:
Cluster allocation by OPTICS using cluster-ordering diagram:
Image segmentation by Sync-SOM algorithm:
Partial synchronization (clustering) in Sync oscillatory network:
Cluster visualization by SOM (Self-Organized Feature Map)
Data clustering by CURE algorithm
from pyclustering.cluster import cluster_visualizer;
from pyclustering.cluster.cure import cure;
from pyclustering.utils import read_sample;
from pyclustering.samples.definitions import FCPS_SAMPLES;
# Input data in following format [ [0.1, 0.5], [0.3, 0.1], ... ].
input_data = read_sample(FCPS_SAMPLES.SAMPLE_LSUN);
# Allocate three clusters:
cure_instance = cure(input_data, 3);
cure_instance.process();
clusters = cure_instance.get_clusters();
# Visualize clusters:
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, None);
visualizer.show();
Data clustering by SYNC-SOM (bio-inspired) algorithm
from pyclustering.cluster import cluster_visualizer;
from pyclustering.cluster.syncsom import syncsom;
from pyclustering.samples.definitions import FCPS_SAMPLES;
from pyclustering.utils import read_sample, draw_dynamics;
# Input data in following format [ [0.1, 0.5], [0.3, 0.1], ... ].
input_data = read_sample(FCPS_SAMPLES.SAMPLE_TARGET);
# Create oscillatory network for cluster analysis
# where the first layer has size 9x9. Radius
# connectivity (similarity parameter) is 0.9.
# CCORE library (C/C++ part of the pyclustering library)
# is used to ensure high performance.
network = syncsom(input_data, 9, 9, 0.9, ccore = True);
# Simulate network (start processing) with collecting
# output dynamic.
(dyn_time, dyn_phase) = network.process(True, 0.999);
# Show structure of the first layer
network.show_som_layer();
# Show structure of the second layer
network.show_sync_layer();
# Show results of clustering
clusters = network.get_clusters();
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, input_data);
visualizer.show();
# Show output dynamic of the network (that is obtained
# from the second layer).
draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
Simulation of oscillatory network PCNN
from pyclustering.nnet.pcnn import pcnn_network, pcnn_visualizer;
# Create Pulse-Coupled neural network with 10 oscillators.
net = pcnn_network(10, ccore = ccore_flag);
# Perform simulation during 100 steps using binary external stimulus.
dynamic = net.simulate(100, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]);
# Allocate synchronous ensembles in the network.
ensembles = dynamic.allocate_sync_ensembles();
# Show output dynamic.
pcnn_visualizer.show_output_dynamic(dynamic);
Simulation of chaotic neural network CNN
from pyclustering.samples.definitions import FCPS_SAMPLES;
from pyclustering.utils import read_sample;
from pyclustering.nnet.cnn import cnn_network, cnn_visualizer;
# load stimulus from file
stimulus = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
# create chaotic neural network, amount of neurons should be equal to amout of stimulus
network_instance = cnn_network(len(stimulus));
# simulate it during 100 steps
output_dynamic = network_instance.simulate(steps, stimulus);
# display output dynamic of the network
cnn_visualizer.show_output_dynamic(output_dynamic);
# dysplay dynamic matrix and observation matrix to show clustering
# phenomenon.
cnn_visualizer.show_dynamic_matrix(output_dynamic);
cnn_visualizer.show_observation_matrix(output_dynamic);