This is a kubectl plugin that allows you to profile applications with low-overhead in Kubernetes environments by generating FlameGraphs and many other outputs as JFR, thread dump, heap dump and class histogram for Java applications by using jcmd. For Python applications, thread dump output and speed scope format file are also supported. See Usage section. More functionalities will be added in the future.
Running kubectl-prof
does not require any modification to existing pods.
This is an open source fork of kubectl-flame with several new features and bug fixes.
- Supported languages: Go, Java (any JVM based language), Python, Ruby, NodeJS, Clang and Clang++.
- Kubernetes that use some of the following container runtimes:
- Containerd by using flag
--runtime=containerd
(default) - CRI-O by using flag
--runtime=crio
- Containerd by using flag
To profile a Java application in pod mypod
for 1 minute and save the flamegraph into /tmp
run:
kubectl prof my-pod -t 5m -l java -o flamegraph --local-path=/tmp
NOTICE:
- if
--local-path
is omitted, a flamegraph result will be saved into current directory
Profiling Java application in alpine-based containers require using --alpine
flag:
kubectl prof mypod -t 1m --lang java -o flamegraph --alpine
NOTICE: this is only required for Java apps, the --alpine
flag is unnecessary for other languages.
Profiling Java Pod and generate JFR output require using -o/--output jfr
option:
kubectl prof mypod -t 5m -l java -o jfr
In this case, profiling Java Pod and generate JFR output require using -o/--output jfr
and --tool async-profiler
options:
kubectl prof mypod -t 5m -l java -o jfr --tool jcmd
In this case, profiling Java Pod and generate the thread dump output require using -o/--output threaddump
options:
kubectl prof mypod -l java -o threaddump
In this case, profiling Java Pod and generate the heap dump output require using -o/--output heapdump
options:
kubectl prof mypod -l java -o heapdump --tool jcmd
In this case, profiling Java Pod and generate the heap histogram output require using -o/--output heaphistogram
options:
kubectl prof mypod -l java -o heaphistogram --tool jcmd
Supported container runtimes values are: crio
, containerd
.
kubectl prof mypod -t 1m --lang java --runtime crio
To profile a Python application in pod mypod
for 1 minute and save the flamegraph into /tmp
run:
kubectl prof mypod -t 1m --lang python -o flamegraph --local-path=/tmp
In this case, profiling Python Pod and generate the thread dump output require using -o/--output threaddump
option:
kubectl prof mypod -t 1m --lang python --local-path=/tmp -o threaddump
In this case, profiling Python Pod and generate the thread dump output require using -o/--output speedscope
option:
kubectl prof mypod -t 1m --lang python --local-path=/tmp -o speedscope
To profile a Golang application in pod mypod
for 1 minute run:
kubectl prof mypod -t 1m --lang go -o flamegraph
To profile a Python application in pod mypod
for 1 minute run:
kubectl prof mypod -t 1m --lang node -o flamegraph
To profile a Ruby application in pod mypod
for 1 minute run:
kubectl prof mypod -t 1m --lang ruby -o flamegraph
To profile a Clang application in pod mypod
for 1 minute run:
kubectl prof mypod -t 1m --lang clang -o flamegraph
To profile a Clang++ application in pod mypod
for 1 minute run:
kubectl prof mypod -t 1m --lang clang++ -o flamegraph
Profiling a pod for 5 minutes in intervals of 60 seconds for java language by giving the cpu limits, the container runtime, the agent image and the image pull policy
kubectl prof mypod -l java -o flamegraph -t 5m --interval 60s --cpu-limits=1 -r containerd --image=localhost/my-agent-image-jvm:latest --image-pull-policy=IfNotPresent
Profiling in profiling namespace a pod running in my-apps namespace by using the profiler service account for go language
kubectl prof mypod -n profiling --service-account=profiler --target-namespace=my-apps -l go
Profiling by setting custom resource requests and limits for the agent pod (default: neither requests nor limits are set) for python language
kubectl prof mypod --cpu-requests 100m --cpu-limits 200m --mem-requests 100Mi --mem-limits 200Mi -l python
Profile the pods with the label selector "app=my-app"
for 5 minutes with JFR format for java language by using --selector
option:
kubectl prof --selectpr app=myapp -t 5m -l java -o jfr
In addition, you can define the number of pods to be profiled simultaneously by using --pool-size-profiling-jobs
.
For example, the following command will profile five pods simultaneously:
kubectl prof --selectpr app=myapp -t 5m -l java -o jfr --pool-size-profiling-jobs 5
kubectl prof --help
Install Krew
Install repository and plugin:
kubectl krew index add kubectl-prof https://github.com/josepdcs/kubectl-prof
kubectl krew search kubectl-prof
kubectl krew install kubectl-prof/prof
kubectl prof --help
See the release page for the full list of pre-built assets. And download the binary according yours architecture.
wget https://github.com/josepdcs/kubectl-prof/releases/download/1.3.0/kubectl-prof_1.3.0_linux_amd64.tar.gz
tar xvfz kubectl-prof_1.3.0_linux_amd64.tar.gz && sudo install kubectl-prof /usr/local/bin/
$ go get -d github.com/josepdcs/kubectl-prof
$ cd $GOPATH/src/github.com/josepdcs/kubectl-prof
$ make install-deps
$ make
Modify Makefile, property DOCKER_BASE_IMAGE, and run:
$ make agents
kubectl-prof
launch a Kubernetes Job on the same node as the target pod. Under the hood kubectl-prof
can use the
following tools according the programming language:
- For Java:
- async-profiler in order to generate flame graphs or JFR
files and the rest of output type supported for this tool.
- For generating flame graphs use the option:
--tool async-profiler
and-o flamegraph
. - For generating JFR files use the option:
--tool async-profiler
and-o jfr
. - For generating collapsed/raw use the option:
--tool async-profiler
and-o collapsed
or-o raw
. - Note: Default output is flame graphs if no option
-o/--output
is given.
- For generating flame graphs use the option:
- jcmd in order to generate: JFR
files, thread dumps, heap dumps and heap histogram.
- For generating JFR files use the options:
--tool jcmd
and-o jfr
. - For generating thread dumps use the options:
--tool jcmd
and-o threaddump
. - For generating heap dumps use the options:
--tool jcmd
and-o heapdump
. - For generating heap histogram use the options:
--tool jcmd
and-o histogram
. - Note: Default output is JFR if no option
-o/--output
is given.
- For generating JFR files use the options:
- Note: Default tool is async-profiler if no
option
--tool
is given and default output is flame graphs if no option-o/--output
is also given.
- async-profiler in order to generate flame graphs or JFR
files and the rest of output type supported for this tool.
- For Golang: ebpf profiling.
- For generating flame graphs use the option:
-o flamegraph
. - For generating raw use the option:
-o raw
. - Note: Default output is flame graphs if no option
-o/--output
is given.
- For generating flame graphs use the option:
- For Python: py-spy.
- For generating flame graphs use the option:
-o flamegraph
. - For generating thread dumps use the option:
-o threaddump
. - For generating speed scope use the option :
-o speedscope
. - For generating raw use the option:
-o raw
. - Note: Default output is flame graphs if no option
-o/--output
is given.
- For generating flame graphs use the option:
- For Ruby: rbspy.
- For generating flame graphs use the option:
-o flamegraph
. - For generating speed scope use the option :
-o speedscope
. - For generating callgrind use the option:
-o callgrind
. - Note: Default output is flame graphs if no option
-o/--output
is given.
- For generating flame graphs use the option:
- For Node.js: ebpf profiling and perf but last one is not recommended.
- For generating flame graphs use the option:
-o flamegraph
. - For generating raw use the option:
-o raw
. - Note: Default output is flame graphs if no option
-o/--output
is given. - In order for Javascript Symbols to be resolved, node process needs to be run with
--prof-basic-prof
flag.
- For generating flame graphs use the option:
- For Clang and Clang++: perf is the default profiler but ebpf profiling is also supported.
The raw output is a text file with the raw data from the profiler. It could be used to generate flame graphs, or you can use https://www.speedscope.app/ to visualize the data.
kubectl-prof
also supports to work in modes discrete and continuous:
- In discrete mode: only one profiling result is requested. Once this result is obtained, the profiling process
finishes. This is the default behaviour when only using
-t time
option. - In continuous mode: can produce more than one result. Given a session duration and an interval, a result is produced
every interval until the profiling session finishes. Only the last produced result is available. It is client
responsibility to store all the session results.
- For using this option you must use the
--interval time
option in addition to-t time
.
- For using this option you must use the
In addition, kubectl-prof
will attempt to profile all the processes detected in the container.
It will try to profile them all based on the provided language. When this happens, the tool will display a warning similar to:
⚠ Detected more than one PID to profile: [2508 2509]. It will be attempt to profile all of them. Use the --pid flag specifying the corresponding PID if you only want to profile one of them.
But if you want to profile a specific process, you have two options:
- Provide the specific PID using the
--pid PID
flag if you know the PID (the previous warning can help you identify the PID you want to profile). - Provide a process name using the
--pgrep process-matching-name
flag.
Please refer to the contributing.md file for information about how to get involved. We welcome issues, questions, and pull requests
- Josep Damià Carbonell Seguí: josepdcs@gmail.com
Special thanks to the original Author of kubectl-flame
- Eden Federman: efederman@verizonmedia.com
- Verizon Media Code
This project is licensed under the terms of the Apache 2.0 open source license. Please refer to LICENSE for the full terms.
Service | Status |
---|---|
Github Actions | |
GoReport |