/kubectl-prof

kubectl-prof is a kubectl plugin to profile applications on kubernetes with minimum overhead

Primary LanguageGoApache License 2.0Apache-2.0

Kubectl Prof

This is a kubectl plugin that allows you to profile applications with low-overhead in Kubernetes environments by generating FlameGraphs and many other outputs as JFR, thread dump, heap dump and class histogram for Java applications by using jcmd. For Python applications, thread dump output and speed scope format file are also supported. See Usage section. More functionalities will be added in the future.

Running kubectl-prof does not require any modification to existing pods.

This is an open source fork of kubectl-flame with several new features and bug fixes.

Table of Contents

Requirements

  • Supported languages: Go, Java (any JVM based language), Python, Ruby, NodeJS, Clang and Clang++.
  • Kubernetes that use some of the following container runtimes:
    • Containerd by using flag --runtime=containerd (default)
    • CRI-O by using flag --runtime=crio

Usage

Profiling Java Pod

To profile a Java application in pod mypod for 1 minute and save the flamegraph into /tmp run:

kubectl prof my-pod -t 5m -l java -o flamegraph --local-path=/tmp

NOTICE:

  • if --local-path is omitted, a flamegraph result will be saved into current directory

Profiling Alpine based container

Profiling Java application in alpine-based containers require using --alpine flag:

kubectl prof mypod -t 1m --lang java -o flamegraph --alpine 

NOTICE: this is only required for Java apps, the --alpine flag is unnecessary for other languages.

Profiling Java Pod and generate JFR output by using jcmd as default tool

Profiling Java Pod and generate JFR output require using -o/--output jfr option:

kubectl prof mypod -t 5m -l java -o jfr 

Profiling Java Pod and generate JFR output but by using async-profiler

In this case, profiling Java Pod and generate JFR output require using -o/--output jfr and --tool async-profiler options:

kubectl prof mypod -t 5m -l java -o jfr --tool jcmd

Profiling Java Pod and generate thread dump output by using jcmd as default tool

In this case, profiling Java Pod and generate the thread dump output require using -o/--output threaddump options:

kubectl prof mypod -l java -o threaddump

Profiling Java Pod and generate heap dump output (hprof format) by using jcmd as default tool

In this case, profiling Java Pod and generate the heap dump output require using -o/--output heapdump options:

kubectl prof mypod -l java -o heapdump --tool jcmd

Profiling Java Pod and generate heap histogram output (hprof format) by using jcmd as default tool

In this case, profiling Java Pod and generate the heap histogram output require using -o/--output heaphistogram options:

kubectl prof mypod -l java -o heaphistogram --tool jcmd

Profiling specifying the container runtime

Supported container runtimes values are: crio, containerd.

kubectl prof mypod -t 1m --lang java --runtime crio

Profiling Python Pod

To profile a Python application in pod mypod for 1 minute and save the flamegraph into /tmp run:

kubectl prof mypod -t 1m --lang python -o flamegraph --local-path=/tmp

Profiling Python Pod and generate thread dump output

In this case, profiling Python Pod and generate the thread dump output require using -o/--output threaddump option:

kubectl prof mypod -t 1m --lang python --local-path=/tmp -o threaddump 

Profiling Python Pod and generate speed scope output format file

In this case, profiling Python Pod and generate the thread dump output require using -o/--output speedscope option:

kubectl prof mypod -t 1m --lang python --local-path=/tmp -o speedscope 

Profiling Golang Pod

To profile a Golang application in pod mypod for 1 minute run:

kubectl prof mypod -t 1m --lang go -o flamegraph

Profiling Node Pod

To profile a Python application in pod mypod for 1 minute run:

kubectl prof mypod -t 1m --lang node -o flamegraph

Profiling Ruby Pod

To profile a Ruby application in pod mypod for 1 minute run:

kubectl prof mypod -t 1m --lang ruby -o flamegraph

Profiling Clang Pod

To profile a Clang application in pod mypod for 1 minute run:

kubectl prof mypod -t 1m --lang clang -o flamegraph

Profiling Clang++ Pod

To profile a Clang++ application in pod mypod for 1 minute run:

kubectl prof mypod -t 1m --lang clang++ -o flamegraph

Profiling with several options:

Profiling a pod for 5 minutes in intervals of 60 seconds for java language by giving the cpu limits, the container runtime, the agent image and the image pull policy

kubectl prof mypod -l java -o flamegraph -t 5m --interval 60s --cpu-limits=1 -r containerd --image=localhost/my-agent-image-jvm:latest --image-pull-policy=IfNotPresent

Profiling in profiling namespace a pod running in my-apps namespace by using the profiler service account for go language

kubectl prof mypod -n profiling --service-account=profiler --target-namespace=my-apps -l go

Profiling by setting custom resource requests and limits for the agent pod (default: neither requests nor limits are set) for python language

kubectl prof mypod --cpu-requests 100m --cpu-limits 200m --mem-requests 100Mi --mem-limits 200Mi -l python

Profiling a bunch of pods by using a label selector

Profile the pods with the label selector "app=my-app" for 5 minutes with JFR format for java language by using --selector option:

kubectl prof --selectpr app=myapp -t 5m -l java -o jfr

⚠️ ATTENTION: use this option with caution, it will profile all the pods that match the label selector.

In addition, you can define the number of pods to be profiled simultaneously by using --pool-size-profiling-jobs. For example, the following command will profile five pods simultaneously:

kubectl prof --selectpr app=myapp -t 5m -l java -o jfr --pool-size-profiling-jobs 5

For more detailed options run:

kubectl prof --help

Installation

Using krew

Install Krew

Install repository and plugin:

kubectl krew index add kubectl-prof https://github.com/josepdcs/kubectl-prof
kubectl krew search kubectl-prof
kubectl krew install kubectl-prof/prof
kubectl prof --help

Pre-built binaries

See the release page for the full list of pre-built assets. And download the binary according yours architecture.

Installing for Linux x86_64

wget https://github.com/josepdcs/kubectl-prof/releases/download/1.3.0/kubectl-prof_1.3.0_linux_amd64.tar.gz
tar xvfz kubectl-prof_1.3.0_linux_amd64.tar.gz && sudo install kubectl-prof /usr/local/bin/

Building

Install source code and golang dependencies

$ go get -d github.com/josepdcs/kubectl-prof
$ cd $GOPATH/src/github.com/josepdcs/kubectl-prof
$ make install-deps

Build binary

$ make

Build Agents Containers

Modify Makefile, property DOCKER_BASE_IMAGE, and run:

$ make agents

How it works

kubectl-prof launch a Kubernetes Job on the same node as the target pod. Under the hood kubectl-profcan use the following tools according the programming language:

  • For Java:
    • async-profiler in order to generate flame graphs or JFR files and the rest of output type supported for this tool.
      • For generating flame graphs use the option: --tool async-profiler and -o flamegraph.
      • For generating JFR files use the option: --tool async-profiler and -o jfr.
      • For generating collapsed/raw use the option: --tool async-profiler and -o collapsed or -o raw.
      • Note: Default output is flame graphs if no option -o/--output is given.
    • jcmd in order to generate: JFR files, thread dumps, heap dumps and heap histogram.
      • For generating JFR files use the options: --tool jcmd and -o jfr.
      • For generating thread dumps use the options: --tool jcmd and -o threaddump.
      • For generating heap dumps use the options: --tool jcmd and -o heapdump.
      • For generating heap histogram use the options: --tool jcmd and -o histogram.
      • Note: Default output is JFR if no option -o/--output is given.
    • Note: Default tool is async-profiler if no option --tool is given and default output is flame graphs if no option -o/--output is also given.
  • For Golang: ebpf profiling.
    • For generating flame graphs use the option: -o flamegraph.
    • For generating raw use the option: -o raw.
    • Note: Default output is flame graphs if no option -o/--output is given.
  • For Python: py-spy.
    • For generating flame graphs use the option: -o flamegraph.
    • For generating thread dumps use the option: -o threaddump.
    • For generating speed scope use the option : -o speedscope.
    • For generating raw use the option: -o raw.
    • Note: Default output is flame graphs if no option -o/--output is given.
  • For Ruby: rbspy.
    • For generating flame graphs use the option: -o flamegraph.
    • For generating speed scope use the option : -o speedscope.
    • For generating callgrind use the option: -o callgrind.
    • Note: Default output is flame graphs if no option -o/--output is given.
  • For Node.js: ebpf profiling and perf but last one is not recommended.
    • For generating flame graphs use the option: -o flamegraph.
    • For generating raw use the option: -o raw.
    • Note: Default output is flame graphs if no option -o/--output is given.
    • In order for Javascript Symbols to be resolved, node process needs to be run with --prof-basic-prof flag.
  • For Clang and Clang++: perf is the default profiler but ebpf profiling is also supported.

The raw output is a text file with the raw data from the profiler. It could be used to generate flame graphs, or you can use https://www.speedscope.app/ to visualize the data.

kubectl-prof also supports to work in modes discrete and continuous:

  • In discrete mode: only one profiling result is requested. Once this result is obtained, the profiling process finishes. This is the default behaviour when only using -t time option.
  • In continuous mode: can produce more than one result. Given a session duration and an interval, a result is produced every interval until the profiling session finishes. Only the last produced result is available. It is client responsibility to store all the session results.
    • For using this option you must use the --interval time option in addition to -t time.

In addition, kubectl-prof will attempt to profile all the processes detected in the container. It will try to profile them all based on the provided language. When this happens, the tool will display a warning similar to:

⚠ Detected more than one PID to profile: [2508 2509]. It will be attempt to profile all of them. Use the --pid flag specifying the corresponding PID if you only want to profile one of them.

But if you want to profile a specific process, you have two options:

  • Provide the specific PID using the --pid PID flag if you know the PID (the previous warning can help you identify the PID you want to profile).
  • Provide a process name using the --pgrep process-matching-name flag.

Contribute

Please refer to the contributing.md file for information about how to get involved. We welcome issues, questions, and pull requests

Maintainers

Special thanks to the original Author of kubectl-flame

License

This project is licensed under the terms of the Apache 2.0 open source license. Please refer to LICENSE for the full terms.

Project status

Service Status
Github Actions Build Status
GoReport Go Report Card