软件 | 版本 |
---|---|
Linux | Ubuntu 18.04/20.04 |
cuda | 11.1 |
cudnn | 8.4 |
tensorflow | 2.4.0 |
tensorflow-addons | 可选(使用了GN) |
$ tree .
.
├── config.py
├── data
│ ├── coco -> /home/<username>/data/coco/ # Symbolic link to the datasets
│ └── coco_classes.txt # class name
├── decoupled_solo_r50_fpn.png # Network Structure Generated by pydot(use tensorflow utils)
├── inference.py # for infertence
├── loss # define the loss
│ ├── __init__.py
│ └── solo_loss.py # solo loss defined here
├── model # define the model
│ ├── custom_layers.py # Resize, GN, IN, Conv2dUnit, Conv3x3 ...
│ ├── fpn.py # FPN
│ ├── head.py # Decoupled SOLO Head
│ ├── __init__.py
│ ├── resnet.py # ResNet, support r50 and r101
│ └── solo.py # SOLO Network
├── network_summary.txt
├── plotmodel.py # used to plot the model structure
├── pytorch2keras.py # convert model weight from torch style to keras or tf
├── README.md
├── requirements.txt # requirements
├── temp # temp folder, used for debug
│ ├── 0_0.jpg
│ └── 0.jpg
├── tools # dataprocess tools, for coco dataset transform
│ ├── cocotools.py
│ ├── data_process.py
│ ├── __init__.py
│ └── transform.py
├── train.py # train
└── weights # saved weights
├── Decoupled_SOLO_R50_1x.h5
├── step00015000.h5
└── ...
[1] SOLO: Segmenting Objects by Locations
[2] SOLOv2: Dynamic and Fast Instance Segmentation
[3] 原作者代码仓库(Pytorch和MMdetection实现)
[4] Keras-SOLO