Utilizing deep learning-based methods for functional or structural modeling of the human visual cortex.
Decoding(解码): Engineering issues, neural activity
Encoding(编码): Scientific issues, visual stimulation
Beijing Super Cloud Computing Center - N32EA14P: NVIDIA A100-PCIE-40GB*8
dsub -s run.sh # submit the job
djob # check id of the job
djob -T job_id # cancel the job via its id
module load anaconda/2021.11 cuda/11.8
conda create --name BraVO python=3.11
source activate BraVO
# Note: The lastest version was installed for each package, the version was shown after '#' in each line.
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.2.0 jinja2-3.1.3 mpmath-1.3.0 networkx-3.2.1 nvidia-cublas-cu11-11.11.3.6 nvidia-cuda-cupti-cu11-11.8.87 nvidia-cuda-nvrtc-cu11-11.8.89 nvidia-cuda-runtime-cu11-11.8.89 nvidia-cudnn-cu11-8.7.0.84 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.3.0.86 nvidia-cusolver-cu11-11.4.1.48 nvidia-cusparse-cu11-11.7.5.86 nvidia-nccl-cu11-2.20.5 nvidia-nvtx-cu11-11.8.86 pillow-10.2.0 sympy-1.12 torch-2.3.1+cu118 torchaudio-2.3.1+cu118 torchvision-0.18.1+cu118 triton-2.3.1 typing-extensions-4.9.0
pip install nibabel -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed nibabel-5.2.1 numpy-2.0.0 packaging-24.1
pip install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed tqdm-4.66.4
pip install h5py -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed h5py-3.11.0
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed pandas-2.2.2 python-dateutil-2.9.0.post0 pytz-2024.1 six-1.16.0 tzdata-2024.1
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed scipy-1.14.0
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple/ # Successfully installed opencv-python-4.10.0.84
The Natural Scenes Dataset(NSD)
Allen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M., Caron, B., Pestilli, F., Charest, I., Hutchinson, J.B., Naselaris, T., Kay, K. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience (2021). Note:
- Full data: subj01, subj02, subj05, subj07
- Download annotation of COCO from link, unzip it and then place the whole folder
annotations
underdataset/NSD/nsddata_stimuli/stimuli/nsd
- NSD Data Manual
File path | Description
..
├── dataset
│ └── NSD
│ ├── nsddata
│ ├── nsdata_betas
│ ├── nsddata_diffusion
│ ├── nsddata_other
│ ├── nsddata_rawdata
│ ├── nsddata_stimuli
│ └── nsddata_timeseries
├── BraVO
│ ├── dirs ...
│ └── files ...
└── BraVO_saved
Step 1:
run dsub -s step1_run.sh
for subj 01, 02, 05, 07
Step 2:
conda env remove -n BraVO