conda create --name bn4depression python=3.9.1
source activate bn4depression
conda install -c conda-forge nibabel
conda install -c conda-forge nilearn
conda install matplotlib
conda install yaml
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install tqdm
adjust your own path in load_path.py
Dataset in OpenNeuro: depression_ds002748
.
├─Brainnetome4Depression
│ └─BN_Atlas
├─connection_matrix
└─depression_ds002748
├─sub-01
│ ├─anat
│ └─func
├─ ... ...
Get functional connection: python functional_connection.py
Change your hyperparameter and save_model_weights/save_result_txt in config.yaml
Change your aggregation type in run.py
and then python run.py
module load anaconda/2021.11
module load cudnn/8.8.1_cuda11.x
# create bn4depression via Conda
chmod -x run.sh
source activate bn4depression
dsub -s run.sh #提交作业
djob # 查看作业id
djob -T 作业ID #取消作业
result_lobe1/2/3.txt
: aggregation type is lobe
.
result_gyrus1/2/3.txt
: aggregation type is gyrus
.
To save public store, all txt files were zipped as ori_data.zip
.
draw.ipynb
: AUC and LogLoss with lobe/gyrus or different epochs/learning_rate.