/BlockSparse

Greedy Algorithms for Recovering Block Sparse Signals

Primary LanguagePython

Group Projected Subspace Pursuit for Block Sparse Signal Reconstruction: Convergence Analysis and Applications

Roy Y. He, Haixia Liu, and Hao Liu

This project implements and compares the following greedy algorithms for recoverying block sparse signals:

  1. BOMP -- Eldar, Y.C., Kuppinger, P. and Bolcskei, H., 2010. Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 58(6), pp.3042-3054.
  2. BSP -- Kamali, A., Sahaf, M.A., Hooseini, A.D. and Tadaion, A.A., 2013. Block subspace pursuit for block-sparse signal reconstruction. Iranian Journal of Science and Technology. Transactions of Electrical Engineering, 37(E1), p.1.
  3. BOMPR -- Fu, Y., Li, H., Zhang, Q. and Zou, J., 2014. Block-sparse recovery via redundant block OMP. Signal Processing, 97, pp.162-171.
  4. BCoSaMP -- Zhang, X., Xu, W., Cui, Y., Lu, L. and Lin, J., 2019. On recovery of block sparse signals via block compressive sampling matching pursuit. IEEE Access, 7, pp.175554-175563.
  5. GPSP -- He, Y., Kang, S.H., Liao, W., Liu, H. and Liu, Y., 2023. Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT). Journal of Computational Physics, 494, p.112526.

Preview Comparison

Heterogeneous Gaussian blocks (M: block size)

Other types of random sampling matrices (M: block size)