NLP学习教程

本教程致力于帮助同学们快速入门NLP,并掌握各个任务的SOTA模型。

  1. 系统入门方法
  2. 各任务模型list汇总(doing):文本分类、文本匹配、序列标注、文本生成、语言模型
  3. 文本分类综述&代码&技巧
  4. 文本匹配综述&代码&技巧
  5. 序列标注综述&代码&技巧
  6. 文本生成综述&代码&技巧
  7. 语言模型综述&代码&技巧

机器学习是一门既重理论又重实践的学科,想一口吃下这个老虎是不可能的,因此学习应该是个循环且逐渐细化的过程。

首先要有个全局印象,知道minimum的情况下要学哪些知识点:

之后就可以开始逐个击破,但也不用死磕,控制好目标难度,先用三个月时间进行第一轮学习:

  1. 读懂机器学习、深度学习原理,不要求手推公式
  2. 了解经典任务的baseline,动手实践,看懂代码
  3. 深入一个应用场景,尝试自己修改模型,提升效果

迈过了上面这道坎后,就可以重新回归理论,提高对自己的要求,比如手推公式、盲写模型、拿到比赛Top等。

Step1: 基础原理

机器学习最初入门时对数学的要求不是很高,掌握基础的线性代数、概率论就可以了,正常读下来的理工科大学生以上应该都没问题,可以直接开始学,碰到不清楚的概念再去复习。

统计机器学习部分,建议初学者先看懂线性分类、SVM、树模型和图模型,这里推荐李航的「统计学习方法」,薄薄的摸起来没有很大压力,背着也方便,我那本已经翻四五遍了。喜欢视频课程的话可以看吴恩达的「CS229公开课」或者林田轩的「机器学习基石」。但不管哪个教程,都不必要求一口气看完吃透。

深度学习部分,推荐吴恩达的「深度学习」网课、李宏毅的「深度学习」网课或者邱锡鹏的「神经网络与深度学习」教材。先弄懂神经网络的反向传播推导,然后去了解词向量和其他的编码器的核心**、前向反向过程。

Step2: 经典模型与技巧

有了上述的基础后,应该就能看懂模型结构和论文里的各种名词公式了。接下来就是了解NLP各个经典任务的baseline,并看懂源码。对于TF和Pytorch的问题不用太纠结,接口都差不多,找到什么就看什么,自己写的话建议Pytorch。

快速了解经典任务脉络可以看综述,建议先了解一两个该任务的经典模型再去看,否则容易云里雾里:

文本分类

文本分类是NLP应用最多且入门必备的任务,TextCNN堪称第一baseline,往后的发展就是加RNN、加Attention、用Transformer、用GNN了。第一轮不用看得太细,每类编码器都找个代码看一下即可,顺便也为其他任务打下基础。

但如果要做具体任务的话,建议倒序去看SOTA论文,了解各种技巧,同时善用知乎,可以查到不少提分方法。

文本匹配

文本匹配会稍微复杂些,它有双塔和匹配两种任务范式。双塔模型可以先看SiamCNN,了解完结构后,再深入优化编码器的各种方法;基于匹配的方式则在于句子表示间的交互,了解BERT那种TextA+TextB拼接的做法之后,可以再看看阿里的RE2这种轻量级模型的做法:

序列标注

序列标注主要是对Embedding、编码器、结果推理三个模块进行优化,可以先读懂Bi-LSTM+CRF这种经典方案的源码,再去根据需要读论文改进。

文本生成

文本生成是最复杂的,具体的SOTA模型我还没梳理完,可以先了解Seq2Seq的经典实现,比如基于LSTM的编码解码+Attention、纯Transformer、GPT2以及T5,再根据兴趣学习VAE、GAN、RL等。

语言模型

语言模型虽然很早就有了,但18年BERT崛起之后才越来越被重视,成为NLP不可或缺的一个任务。了解BERT肯定是必须的,有时间的话再多看看后续改进,很经典的如XLNet、ALBERT、ELECTRA还是不容错过的。

Step3: 实践优化

上述任务都了解并且看了一些源码后,就该真正去当炼丹师了。千万别满足于跑通别人的github代码,最好去参加一次Kaggle、天池、Biendata等平台的比赛,享受优化模型的摧残。

Kaggle的优点是有各种kernel可以学习,国内比赛的优点是中文数据方便看case。建议把两者的优点结合,比如参加一个国内的文本匹配比赛,就去kaggle找相同任务的kernel看,学习别人的trick。同时多看些顶会论文并复现,争取做完一个任务后就把这个任务技巧摸清。

各任务模型list汇总

P.S. 对照文首脑图看效果更佳

Model Year Method Venue Code
ReNN 2011 RAE EMNLP link
2012 MV-RNN EMNLP link
2013 RNTN EMNLP link
2014 DeepRNN NIPS
MLP 2014 Paragraph-Vec ICML link
2015 DAN ACL link
RNN 2015 Tree-LSTM ACL link
2015 S-LSTM ICML
2015 TextRCNN AAAI link
2015 MT-LSTM EMNLP link
2016 oh-2LSTMp ICML link
2016 BLSTM-2DCNN COLING link
2016 Multi-Task IJCAI link
2017 DeepMoji EMNLP link
2017 TopicRNN ICML link
2017 Miyato et al. ICLR link
2018 RNN-Capsule TheWebConf link
CNN 2014 TextCNN EMNLP link
2014 DCNN ACL link
2015 CharCNN NIPS link
2016 SeqTextRCNN NAACL link
2017 XML-CNN SIGIR link
2017 DPCNN ACL link
2017 KPCNN IJCAI
2018 TextCapsule EMNLP link
2018 HFT-CNN EMNLP link
2020 Bao et al. ICLR link
Attention 2016 HAN NAACL link
2016 BI-Attention NAACL link
2016 LSTMN EMNLP
2017 Lin et al. ICLR link
2018 SCM COLING link
2018 ELMo NAACL link
2018 BiBloSA ICLR link
2019 AttentionXML NIPS link
2019 HAPN EMNLP
2019 Proto-HATT AAAI link
2019 STCKA AAAI link
Transformer 2019 BERT NAACL link
2019 Sun et al. CCL link
2019 XLNet NIPS link
2019 RoBERTa link
2020 ALBERT ICLR link
GNN 2018 DGCNN TheWebConf link
2019 TextGCN AAAI link
2019 SGC ICML link
2019 Huang et al. EMNLP link
2019 Peng et al.
2020 MAGNET ICAART link
Others 2017 Miyato et al. ICLR link
2018 TMN EMNLP
2019 Zhang et al. NAACL link

文本匹配

序列标注

文本生成

语言模型