- Ubuntu 18.04
- python>=3.7
- pytorch>=1.6
- torchtext
- graph4nlp
- Stanford CoreNLP for dependnecy parsing
- Training set is from imojie, the original set can download from here by running download_data.sh
-
Training set: By running
python process_imojie_train_dataset.py
you can get
train_1w.json
,train_3w.json
andtrain_9w.json
in/raw
folder -
Val and test set is placed in
/raw
folder named asval.json
andtest.json
, they are from CaRB⚠ Noting that because DGnnIE only considers binary extraction, the
val
andtest
are processed by filtering out n-ary extractions, runningpython process_carb_val_and_test_dataset.py
bash train.sh
bash inference.sh
with single input
and batch input
-
- with BLEU score
BLEU_1 = 0.64975, BLEU_2 = 0.59110, BLEU_3 = 0.53981, BLEU_4 = 0.49458
- with BLEU score
-
System Precision Recall F1 Ollie 0.59 0.46 0.52 ClausIE 0.53 0.62 0.57 PropS 0.45 0.36 0.40 OpenIE-4 0.63 0.58 0.60 OpenIE-5 0.58 0.57 0.57 RnnOIE - - 0.50 SpanOIE - - 0.48 IMoJIE 0.66 0.55 0.60 OpenIE-6 0.65 0.56 0.60 DGnnIE 0.70 0.66 0.68