/Spam-Classification

Spam Classification (Python)

Primary LanguageJupyter Notebook

End to End Machine Learning Spam-classification

A cursory look at the web app

Table of Content

Introduction

Directories structure

├── EDA
│   └── Spam_classification.ipynb
├── Read_me_files
│   ├── app_record.gif
│   ├── app_record.webp
│   ├── spam_class.PNG
├── app
│   ├── __init__.py
│   ├── __init__.py
├── data
│   ├── SMSSpamCollection
│   ├── process.py
│   └── readme
├── models
│   ├── model.pkl
│   ├── model.pkl
│   └──  preprocessor.pkl
├── static
│   ├── spam.webp
│   ├── spam_id.ico
│   ├── styles.css
│   └──  thumb_up.webp
├── templates
│   ├── go.html
│   └── master.html
│
├── Procfile
├── README.md
├── Procfile
├── process.py
├── README.md
├── requirements.txt
├── run.py
└── train.py

Programming language

  • Python

Dependencies

  • Markdown==3.1.1
  • matplotlib==3.1.1
  • scikit-learn==0.21.3
  • seaborn==0.9.0
  • autopep8==1.5.3
  • click==7.1.2
  • flake8==3.8.3
  • Flask==1.1.2
  • itsdangerous==1.1.0
  • Jinja2==2.11.2
  • joblib==0.16.0
  • MarkupSafe==1.1.1
  • mccabe==0.6.1
  • nltk==3.5
  • numpy==1.19.0
  • pandas==1.0.5
  • pycodestyle==2.6.0
  • pyflakes==2.2.0
  • python-dateutil==2.8.1
  • pytz==2020.1
  • regex==2020.6.8
  • scikit-learn==0.23.1
  • scipy==1.5.1
  • six==1.15.0
  • threadpoolctl==2.1.0
  • Werkzeug==1.0.1
  • wget==3.2

Data Processing

Exploratory data analysis

Summary

Acknowledgments

Instruction on how to run the program locally from your computer

  • Navigate to the app directory then type:
  • python run.py

Run app on the web

Part of the dependencies

Associated post

References