/MITH

Primary LanguagePython

MITH

Multi-Granularity Interactive Transformer Hashing for Cross-modal Retrieval

1. Introduction

This is the source code of ACMMM 2023 paper "Multi-Granularity Interactive Transformer Hashing for Cross-modal Retrieval".

The main architecture of MITH:

The experimental result:

2. Requirements

  • python 3.7.16
  • pytorch 1.9.1
  • torchvision 0.10.1
  • numpy
  • scipy
  • tqdm
  • pillow
  • einops
  • ftfy
  • regex
  • ...

3. Preparation

3.1 Download pre-trained CLIP

Pretrained CLIP model could be found in the 30 lines of CLIP/clip/clip.py. This code is based on the "ViT-B/32". You should download "ViT-B/32" and put it in ./cache, or you can find it from the following link:

link:https://pan.baidu.com/s/1jCYEBhm-bpikAh_Bti139g password:9idm

3.2 Generate dataset

You should generate the following *.mat file for each dataset. The structure of directory ./dataset should be:

    dataset
    ├── coco
    │   ├── caption.mat 
    │   ├── index.mat
    │   └── label.mat 
    ├── flickr25k
    │   ├── caption.mat
    │   ├── index.mat
    │   └── label.mat
    └── nuswide
        ├── caption.mat
        ├── index.mat 
        └── label.mat

Please preprocess the dataset to the appropriate input format.

More details about the generation, meaning, and format of each mat file can be found in ./dataset/README.md.

Additionally, cleaned datasets (MIRFLICKR25K & MSCOCO & NUSWIDE) used in our experiments are available at pan.baidu.com:

link:https://pan.baidu.com/s/1jCYEBhm-bpikAh_Bti139g password:9idm

4. Train

After preparing the Python environment, pretrained CLIP model, and dataset, we can train the MITH model.

4.1 Train on MIRFlickr25K

python main.py --is-train --dataset flickr25k --query-num 2000 --train-num 10000 --result-name "RESULT_MITH_FLICKR" --k-bits 64

5. Test

5.1 Test on MIRFlickr25K

python main.py --dataset flickr25k --query-num 2000 --train-num 10000 --result-name "RESULT_MITH_FLICKR" --k-bits 64 --pretrained=MODEL_PATH

More scripts for training and testing are given at ./run_MITH.sh.

6. Citation

If you find our approach useful in your research, please consider citing:

Yishu Liu, Qingpeng Wu, Zheng Zhang, Jingyi Zhang, and Guangming Lu. 2023. Multi-Granularity Interactive Transformer Hashing for Cross-modal Retrieval. In Proceedings of the 31st ACM International Conference on Multimedia (MM ’23). https://doi.org/10.1145/3581783.36.

7. Any question

If you have any questions, please feel free to contact Yishu Liu (liuyishu.smile@gmail.com) or Qingpeng Wu (wqp0033@gmail.com).