GLSL Shaders - playground

Simple study of GLSL shaders, ThreeJS.

SDF

Signed distance function

Drawing shapes

Circle

float drawCircle(vec2 position, vec2 center, float radius) {
    return step(radium, distance(position, center));
}
gl_FragColor = vec4(vec3(drawCircle(vUv, vec2(0.5), uRadius)), 1);

Line

gl_FragColor = vec4(vec3(step(0.99, 1.0 - abs(vUv.y - 0.5))));

FRESNEL

// vertex shader /glsl/ ` varying vec2 vUv; varying vec3 vPosition; varying vec3 vNormal; uniform float uTime;

void main() {
  vUv = uv;
  vPosition = position;
  vNormal = normal;
  gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}

, // fragment shader /*glsl*/ uniform float time; uniform vec3 color; varying vec2 vUv; varying vec3 vPosition; varying vec3 vNormal;

uniform float uMultiplier;
uniform float uAlpha;
uniform vec3 uColorA;
uniform vec3 uColorB;
uniform float uTime;

void main() {
  vec3 viewDirection = normalize(cameraPosition - vPosition);
  float fresnel = 1.0 - dot(viewDirection, vNormal);
  gl_FragColor.rgba = vec4(vec3(fresnel), 1.0);
}

`

SMOOTH MOD

float smoothMod(float axis, float amp, float rad){
    float top = cos(PI * (axis / amp)) * sin(PI * (axis / amp));
    float bottom = pow(sin(PI * (axis / amp)), 2.0) + pow(rad, 2.0);
    float at = atan(top / bottom);
    return amp * (1.0 / 2.0) - (1.0 / PI) * at;
}

ROSE

const PlaneShaderMaterial = shaderMaterial( { uAlpha: 0.5, uMultiplier: 42, uColorA: new THREE.Color(0xff0000), uColorB: new THREE.Color(0x0000ff), uTime: 0, }, // vertex shader /glsl/ ` varying vec2 vUv; varying vec3 vPosition; varying vec3 vNormal; varying float vDisplacement;

uniform float uTime;
#define PI 3.14159265359

vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
vec3 fade(vec3 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);}

float noise(vec3 P){
  vec3 Pi0 = floor(P); // Integer part for indexing
  vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
  Pi0 = mod(Pi0, 289.0);
  Pi1 = mod(Pi1, 289.0);
  vec3 Pf0 = fract(P); // Fractional part for interpolation
  vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
  vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  vec4 iy = vec4(Pi0.yy, Pi1.yy);
  vec4 iz0 = Pi0.zzzz;
  vec4 iz1 = Pi1.zzzz;

  vec4 ixy = permute(permute(ix) + iy);
  vec4 ixy0 = permute(ixy + iz0);
  vec4 ixy1 = permute(ixy + iz1);

  vec4 gx0 = ixy0 / 7.0;
  vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5;
  gx0 = fract(gx0);
  vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
  vec4 sz0 = step(gz0, vec4(0.0));
  gx0 -= sz0 * (step(0.0, gx0) - 0.5);
  gy0 -= sz0 * (step(0.0, gy0) - 0.5);

  vec4 gx1 = ixy1 / 7.0;
  vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5;
  gx1 = fract(gx1);
  vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
  vec4 sz1 = step(gz1, vec4(0.0));
  gx1 -= sz1 * (step(0.0, gx1) - 0.5);
  gy1 -= sz1 * (step(0.0, gy1) - 0.5);

  vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
  vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
  vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
  vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
  vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
  vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
  vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
  vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

  vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  g000 *= norm0.x;
  g010 *= norm0.y;
  g100 *= norm0.z;
  g110 *= norm0.w;
  vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  g001 *= norm1.x;
  g011 *= norm1.y;
  g101 *= norm1.z;
  g111 *= norm1.w;

  float n000 = dot(g000, Pf0);
  float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
  float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
  float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
  float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
  float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
  float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
  float n111 = dot(g111, Pf1);

  vec3 fade_xyz = fade(Pf0);
  vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
  vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
  float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
  return 2.2 * n_xyz;
}

    float smoothMod(float axis, float amp, float rad){
        float top = cos(PI * (axis / amp)) * sin(PI * (axis / amp));
        float bottom = pow(sin(PI * (axis / amp)), 2.0) + pow(rad, 2.0);
        float at = atan(top / bottom);
        return amp * (1.0 / 2.0) - (1.0 / PI) * at;
    }

    float fit(float unscaled, float originalMin, float originalMax, float minAllowed, float maxAllowed){
        return (maxAllowed - minAllowed) * (unscaled - originalMin) / (originalMax - originalMin) + minAllowed;
    }

    float wave(vec3 position) {
        return fit(smoothMod(position.y * 6.0, 1.0, 1.5), 0.35, 0.6, 0.0, 1.0);
    }

void main() {
    vec3 coords = normal;
    coords.y += uTime * 0.1;
    vec3 noisePattern = vec3(noise(coords));
    float pattern = wave(noisePattern);
    vDisplacement = pattern;

    vUv = uv;
    vPosition = position;
    vNormal = normal;

    vec3 newPosition = normal * vDisplacement;
    vec4 modelViewPosition = modelViewMatrix * vec4(newPosition, 1.0);
    vec4 projectionPosition = projectionMatrix * modelViewPosition;
    gl_Position = projectionPosition;
}

, // fragment shader /*glsl*/ uniform float time; uniform vec3 color; varying vec2 vUv; varying vec3 vPosition; varying vec3 vNormal; varying float vDisplacement;

uniform float uMultiplier;
uniform float uAlpha;
uniform vec3 uColorA;
uniform vec3 uColorB;
uniform float uTime;

void main() {
  gl_FragColor.rgba = vec4(vec3(vDisplacement), 1);
}

` );