OpenCV has three built in face recognizers:
- EigenFaces Face Recognizer Recognizer -
cv2.face.createEigenFaceRecognizer()
- FisherFaces Face Recognizer Recognizer -
cv2.face.createFisherFaceRecognizer()
- Local Binary Patterns Histograms (LBPH) Face Recognizer -
cv2.face.createLBPHFaceRecognizer()
This algorithm considers the fact that not all parts of a face are equally important and equally useful. When you look at some one you recognize him/her by his distinct features like eyes, nose, cheeks, forehead and how they vary with respect to each other. So you are actually focusing on the areas of maximum change (mathematically speaking, this change is variance) of the face. For example, from eyes to nose there is a significant change and same is the case from nose to mouth. When you look at multiple faces you compare them by looking at these parts of the faces because these parts are the most useful and important components of a face. Important because they catch the maximum change among faces, change the helps you differentiate one face from the other. This is exactly how EigenFaces face recognizer works.
EigenFaces face recognizer looks at all the training images of all the persons as a whole and try to extract the components which are important and useful (the components that catch the maximum variance/change) and discards the rest of the components. This way it not only extracts the important components from the training data but also saves memory by discarding the less important components. These important components it extracts are called principal components.
Later during recognition, when you feed a new image to the algorithm, it repeats the same process on that image as well. It extracts the principal component from that new image and compares that component with the list of components it stored during training and finds the component with the best match and returns the person label associated with that best match component.
This algorithm is an improved version of EigenFaces face recognizer. Eigenfaces face recognizer looks at all the training faces of all the persons at once and finds principal components from all of them combined. By capturing principal components from all the of them combined you are not focusing on the features that discriminate one person from the other but the features that represent all the persons in the training data as a whole.
This approach has drawbacks, for example, images with sharp changes (like light changes which is not a useful feature at all) may dominate the rest of the images and you may end up with features that are from external source like light and are not useful for discrimination at all. In the end, your principal components will represent light changes and not the actual face features.
Fisherfaces algorithm, instead of extracting useful features that represent all the faces of all the persons, it extracts useful features that discriminate one person from the others. This way features of one person do not dominate over the others and you have the features that discriminate one person from the others.