ct-denoising

Denoising Model

  • RED_CNN
  • WGAN_VGG
  • CYCLEGAN

I/O (DICOM file -> .npy)

  • Input data Directory
    • DICOM file extension = ['.IMA', '.dcm']

$ os.path.join(dcm_path, patent_no, [LDCT_path|NDCT_path], '*.' + extension)

[Common] Main file(main.py) Parameters

  • Directory
  • dcm_path : dicom file directory
  • LDCT_path : LDCT image folder name
  • NDCT_path : NDCT image folder name
  • test_patient_no : default : L067,L291
  • checkpoint_dir : save directory - trained model
  • test_npy_save_dir : save directory - test numpy file
  • pretrained_vgg : pretrained vggnet directory(only WGAN_VGG)
  • Image info
  • patch_size : patch size (WGAN_VGG, RED_CNN)
  • whole_size : whole size
  • img_channel : image channel
  • img_vmax : max value
  • img_vmin : min value
  • Train/Test
  • model : red_cnn, wgan_vgg, cyclegan (for image preprocessing)
  • phase : train | test
  • others
  • is_mayo : summary ROI sample1,2
  • save_freq : save a model every save_freq (iterations)
  • print_freq : print_freq (iterations)
  • continue_train : load the latest model: true, false
  • gpu_no : visible devices(gpu no)