- RED_CNN
- WGAN_VGG
- paper : https://arxiv.org/pdf/1708.00961.pdf
- original code:
- CYCLEGAN
- paper : https://arxiv.org/abs/1703.10593
- original code: https://github.com/xhujoy/CycleGAN-tensorflow
- Input data Directory
- DICOM file extension = ['.IMA', '.dcm']
$ os.path.join(dcm_path, patent_no, [LDCT_path|NDCT_path], '*.' + extension)
- Directory
- dcm_path : dicom file directory
- LDCT_path : LDCT image folder name
- NDCT_path : NDCT image folder name
- test_patient_no : default : L067,L291
- checkpoint_dir : save directory - trained model
- test_npy_save_dir : save directory - test numpy file
- pretrained_vgg : pretrained vggnet directory(only WGAN_VGG)
- Image info
- patch_size : patch size (WGAN_VGG, RED_CNN)
- whole_size : whole size
- img_channel : image channel
- img_vmax : max value
- img_vmin : min value
- Train/Test
- model : red_cnn, wgan_vgg, cyclegan (for image preprocessing)
- phase : train | test
- others
- is_mayo : summary ROI sample1,2
- save_freq : save a model every save_freq (iterations)
- print_freq : print_freq (iterations)
- continue_train : load the latest model: true, false
- gpu_no : visible devices(gpu no)