RS-Internship

ZSL with hyper-spectral data:

Data distribution:

\ % of whole dataset
1 0.00448824275539077
2 0.13933066640647868
3 0.08098351058639867
4 0.023124207239730705
5 0.047126548931603084
6 0.07122646111815786
7 0.002731973851107425
8 0.04663869645819104
9 0.0019514098936481608
10 0.09483852083130062
11 0.23953556444531174
12 0.057859303346667966
13 0.020001951409893647
14 0.12342667577324618
15 0.03766221094740951
16 0.009074056005463947

Data Preprocessing:

Data normalization works. Balancing also works.

Data distribution:

Data Distribution

To make the data really balanced, we only take the classes with 100 or more samples.

Lets see how well the autoencoder encodes and decodes:

original

reconstruction

Losses:

Typical loss of the classifier:

ZSL classif with PCA features losss

Experiments:

Approach left-out class mean accuracy on test set std of accuracy mean accuracy on left-out classes
idea 1 - 30.5% 2.45% -
idea 1 2 28.9% 1.53% 0.0%
idea 1 2,3 30.2% 1.97% 0.0%
idea 1 2,3,4 30.2% 1.97% 0.0%
idea 1 2,3,4,5 37.3% 2.66% 0.0%
idea 2 - 34% 1.37% -
idea 2 2 29.7% 4.8% 0.0%
idea 2 2,3 34% 1,37% 0.0%
idea 2 2,3,4 32.4% 1.37% 0.0%
idea 2 2,3,4,5 36.4% 2.91% 0.0%
idea 2 2,3,4,5 36.4% 2.91% 0.0%
auto encoder features - 39.6% 4.14% 0.0%
auto encoder features 2 27.8% 1.3% 0.0%
auto encoder features 2,3 36.7% 3.31% 0.0%
auto encoder features 2,3,4 -% -% 0.0%
auto encoder features 2,3,4,5 -% -% 0.0%
variantional auto encoder features - 30.9% 1.53% 0.0%
variantional auto encoder features 2 32.5% 1.4% 0.0%
variantional auto encoder features 2,3 35.1% 4.9% 0.0%
variantional auto encoder features 2,3,4 28.9% 3.1% 0.0%
variantional auto encoder features 2,3,4,5 29.7% 2.7% 0.0%