\ | % of whole dataset |
---|---|
1 | 0.00448824275539077 |
2 | 0.13933066640647868 |
3 | 0.08098351058639867 |
4 | 0.023124207239730705 |
5 | 0.047126548931603084 |
6 | 0.07122646111815786 |
7 | 0.002731973851107425 |
8 | 0.04663869645819104 |
9 | 0.0019514098936481608 |
10 | 0.09483852083130062 |
11 | 0.23953556444531174 |
12 | 0.057859303346667966 |
13 | 0.020001951409893647 |
14 | 0.12342667577324618 |
15 | 0.03766221094740951 |
16 | 0.009074056005463947 |
Data normalization works. Balancing also works.
Data distribution:
To make the data really balanced, we only take the classes with 100 or more samples.
Lets see how well the autoencoder encodes and decodes:
Typical loss of the classifier:
Approach | left-out class | mean accuracy on test set | std of accuracy | mean accuracy on left-out classes |
---|---|---|---|---|
idea 1 | - | 30.5% | 2.45% | - |
idea 1 | 2 | 28.9% | 1.53% | 0.0% |
idea 1 | 2,3 | 30.2% | 1.97% | 0.0% |
idea 1 | 2,3,4 | 30.2% | 1.97% | 0.0% |
idea 1 | 2,3,4,5 | 37.3% | 2.66% | 0.0% |
idea 2 | - | 34% | 1.37% | - |
idea 2 | 2 | 29.7% | 4.8% | 0.0% |
idea 2 | 2,3 | 34% | 1,37% | 0.0% |
idea 2 | 2,3,4 | 32.4% | 1.37% | 0.0% |
idea 2 | 2,3,4,5 | 36.4% | 2.91% | 0.0% |
idea 2 | 2,3,4,5 | 36.4% | 2.91% | 0.0% |
auto encoder features | - | 39.6% | 4.14% | 0.0% |
auto encoder features | 2 | 27.8% | 1.3% | 0.0% |
auto encoder features | 2,3 | 36.7% | 3.31% | 0.0% |
auto encoder features | 2,3,4 | -% | -% | 0.0% |
auto encoder features | 2,3,4,5 | -% | -% | 0.0% |
variantional auto encoder features | - | 30.9% | 1.53% | 0.0% |
variantional auto encoder features | 2 | 32.5% | 1.4% | 0.0% |
variantional auto encoder features | 2,3 | 35.1% | 4.9% | 0.0% |
variantional auto encoder features | 2,3,4 | 28.9% | 3.1% | 0.0% |
variantional auto encoder features | 2,3,4,5 | 29.7% | 2.7% | 0.0% |