/DeepEMD4LFT

Fall 2023 NJUSE Machine Learning Course -- Group Project: DeepEMD for LibFewShot

Primary LanguagePythonMIT LicenseMIT

Make few-shot learning easy.

LibFewShot: A Comprehensive Library for Few-shot Learning. Wenbin Li, Ziyi Wang, Xuesong Yang, Chuanqi Dong, Pinzhuo Tian, Tiexin Qin, Jing Huo, Yinghuan Shi, Lei Wang, Yang Gao, Jiebo Luo. In TPAMI 2023.

Supported Methods

Non-episodic methods (a.k.a Fine-tuning based methods)

Meta-learning based methods

Metric-learning based methods

Quick Installation

Please refer to install.md(安装) for installation.

Complete tutorials can be found at document(中文文档).

Reproduction

We provide some validated configs in reproduce, please refer to ./reproduce/<Method_Name>/README.md for further infomations. The meanings of the symbols are as follows:

📖 The accuracies reproted by the papers.

💻 The accuracies reproted by ourselves.

⬇️ Hyperlinks to download the checkpoints folder. (Containing config.yaml, model_best.pth and the train/test log)

📋 Hyperlinks to the config file.

You can also find these checkpoints at model_zoo.

Datasets

Caltech-UCSD Birds-200-2011, Standford Cars, Standford Dogs, miniImageNet, tieredImageNet and WebCaricature are available at Google Drive and 百度网盘(提取码:yr1w).

Contributing

Please feel free to contribute any kind of functions or enhancements, where the coding style follows PEP 8. Please kindly refer to contributing.md(贡献代码) for the contributing guidelines.

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgement

LibFewShot is an open source project designed to help few-shot learning researchers quickly understand the classic methods and code structures. We welcome other contributors to use this framework to implement their own or other impressive methods and add them to LibFewShot. This library can only be used for academic research. We welcome any feedback during using LibFewShot and will try our best to continually improve the library.

Citation

If you use this code for your research, please cite our paper.

@article{li2021LibFewShot,
title = {LibFewShot: A Comprehensive Library for Few-Shot Learning},
author={Li, Wenbin and Wang, Ziyi and Yang, Xuesong and Dong, Chuanqi and Tian, Pinzhuo and Qin, Tiexin and Huo Jing and Shi, Yinghuan and Wang, Lei and Gao, Yang and Luo, Jiebo},
journal = {IEEE Transactions on Pattern Analysis &amp; Machine Intelligence},
year = {2023},
number = {01},
issn = {1939-3539},
pages = {1-18}
}