/DAN-GRF

Deep autoencoder network connected to geographical random forest

Primary LanguageR

######################################################################################
##########################     DEEP AUTOENCODER NETWORK     ##########################
##########################          CONNECTED TO            ##########################
##########################    GEOGRAPHICAL RANDOM FOREST    ##########################
######################################################################################


Authors: Zeinab SOLTANI & Saeid ESMAEILOGHLI
December 10, 2023


--------------------------------------------------------------------------------------------------------------------------------------

Name of code: Deep autoencoder network connected to geographical random forest (DAN‒GRF).

Title of paper: A deep autoencoder network connected to geographical random forest for spatially aware geochemical anomaly detection.

Developers and contact details: Zeinab Soltani (e-mail: zs.soltani@aut.ac.ir) and Saeid Esmaeiloghli (e-mail: esmaeiloghli@gmail.com).

Year first available: 2023.

Hardware required: a computer with Intel(R) Core(TM) i5 @ 2.40 GHz, four cores, eight logical processors, RAM of 8.00 GB or higher.

Software required: R 4.1.2 or higher.

Program language: R language environment.

Program size: 17.80 KB.

The computer code with inset tutorial commands was deposited in a GitHub repository and is available at
https://github.com/Saeid1986/DAN-GRF.git. Moreover, a user manual providing instructions on executing the program, small-sized test
data, and relevant output results were deposited.