/open-llms

🤖 A list of open LLMs available for commercial use.

Apache License 2.0Apache-2.0

Open LLMs

These LLMs are all licensed for commercial use (e.g., Apache 2.0, MIT, OpenRAIL-M). Contributions welcome!

Language Model Release Date Checkpoints Paper/Blog Params (B) Context Length Licence Try it
T5 2019/10 T5 & Flan-T5, Flan-T5-xxl (HF) Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 0.06 - 11 512 Apache 2.0 T5-Large
UL2 2022/10 UL2 & Flan-UL2, Flan-UL2 (HF) UL2 20B: An Open Source Unified Language Learner 20 512, 2048 Apache 2.0
Cerebras-GPT 2023/03 Cerebras-GPT Cerebras-GPT: A Family of Open, Compute-efficient, Large Language Models (Paper) 0.111 - 13 2048 Apache 2.0 Cerebras-GPT-1.3B
Open Assistant (Pythia family) 2023/03 OA-Pythia-12B-SFT-8, OA-Pythia-12B-SFT-4, OA-Pythia-12B-SFT-1 Democratizing Large Language Model Alignment 12 2048 Apache 2.0 Pythia-2.8B
Pythia 2023/04 pythia 70M - 12B Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling 0.07 - 12 2048 Apache 2.0
Dolly 2023/04 dolly-v2-12b Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM 3, 7, 12 2048 MIT
DLite 2023/05 dlite-v2-1_5b Announcing DLite V2: Lightweight, Open LLMs That Can Run Anywhere 0.124 - 1.5 1024 Apache 2.0 DLite-v2-1.5B
RWKV 2021/08 RWKV, ChatRWKV The RWKV Language Model (and my LM tricks) 0.1 - 14 infinity (RNN) Apache 2.0
GPT-J-6B 2023/06 GPT-J-6B, GPT4All-J GPT-J-6B: 6B JAX-Based Transformer 6 2048 Apache 2.0
GPT-NeoX-20B 2022/04 GPT-NEOX-20B GPT-NeoX-20B: An Open-Source Autoregressive Language Model 20 2048 Apache 2.0
Bloom 2022/11 Bloom BLOOM: A 176B-Parameter Open-Access Multilingual Language Model 176 2048 OpenRAIL-M v1
StableLM-Alpha 2023/04 StableLM-Alpha Stability AI Launches the First of its StableLM Suite of Language Models 3 - 65 4096 CC BY-SA-4.0
FastChat-T5 2023/04 fastchat-t5-3b-v1.0 We are excited to release FastChat-T5: our compact and commercial-friendly chatbot! 3 512 Apache 2.0
h2oGPT 2023/05 h2oGPT Building the World’s Best Open-Source Large Language Model: H2O.ai’s Journey 12 - 20 256 - 2048 Apache 2.0
MPT-7B 2023/05 MPT-7B, MPT-7B-Instruct Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs 7 84k (ALiBi) Apache 2.0, CC BY-SA-3.0
RedPajama-INCITE 2023/05 RedPajama-INCITE Releasing 3B and 7B RedPajama-INCITE family of models including base, instruction-tuned & chat models 3 - 7 2048 Apache 2.0 RedPajama-INCITE-Instruct-3B-v1
OpenLLaMA 2023/05 open_llama_7b_700bt_preview, open_llama_3b_600bt_preview OpenLLaMA: An Open Reproduction of LLaMA 3, 7 2048 Apache 2.0 OpenLLaMA-7B-Preview_200bt

Open LLMs for code

Language Model Release Date Checkpoints Paper/Blog Params (B) Context Length Licence Try it
SantaCoder 2023/01 santacoder SantaCoder: don't reach for the stars! 1.1 2048 OpenRAIL-M v1 SantaCoder
StarCoder 2023/05 starcoder StarCoder: A State-of-the-Art LLM for Code, StarCoder: May the source be with you! 15 8192 OpenRAIL-M v1
StarChat Alpha 2023/05 starchat-alpha Creating a Coding Assistant with StarCoder 16 8192 OpenRAIL-M v1
Replit Code 2023/05 replit-code-v1-3b Training a SOTA Code LLM in 1 week and Quantifying the Vibes — with Reza Shabani of Replit 2.7 infinity? (ALiBi) CC BY-SA-4.0 Replit-Code-v1-3B
CodeGen2 2023/04 codegen2 1B-16B CodeGen2: Lessons for Training LLMs on Programming and Natural Languages 1 - 16 2048 Apache 2.0
CodeT5+ 2023/05 CodeT5+ CodeT5+: Open Code Large Language Models for Code Understanding and Generation 0.22 - 16 512 BSD-3-Clause Codet5+-6B

Open LLM datasets for pre-training

Name Release Date Paper/Blog Dataset Tokens (T) License
starcoderdata 2023/05 StarCoder: A State-of-the-Art LLM for Code starcoderdata 0.25 Apache 2.0
RedPajama 2023/04 RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens RedPajama-Data 1.2 Apache 2.0

Open LLM datasets for instruction-tuning

Name Release Date Paper/Blog Dataset Samples (K) License
MPT-7B-Instruct 2023/05 Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs dolly_hhrlhf 59 CC BY-SA-3.0
databricks-dolly-15k 2023/04 Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM databricks-dolly-15k 15 CC BY-SA-3.0
OIG (Open Instruction Generalist) 2023/03 THE OIG DATASET OIG 44,000 Apache 2.0

Open LLM datasets for alignment-tuning

Name Release Date Paper/Blog Dataset Samples (K) License
OpenAssistant Conversations Dataset 2023/04 OpenAssistant Conversations - Democratizing Large Language Model Alignment oasst1 161 Apache 2.0

Evals on open LLMs


What do the licences mean?

  • Apache 2.0: Allows users to use the software for any purpose, to distribute it, to modify it, and to distribute modified versions of the software under the terms of the license, without concern for royalties.
  • MIT: Similar to Apache 2.0 but shorter and simpler. Also, in contrast to Apache 2.0, does not require stating any significant changes to the original code.
  • CC BY-SA-4.0: Allows (i) copying and redistributing the material and (ii) remixing, transforming, and building upon the material for any purpose, even commercially. But if you do the latter, you must distribute your contributions under the same license as the original. (Thus, may not be viable for internal teams.)
  • OpenRAIL-M v1: Allows royalty-free access and flexible downstream use and sharing of the model and modifications of it, and comes with a set of use restrictions (see Attachment A)
  • BSD-3-Clause: This version allows unlimited redistribution for any purpose as long as its copyright notices and the license's disclaimers of warranty are maintained.

Disclaimer: The information provided in this repo does not, and is not intended to, constitute legal advice. Maintainers of this repo are not responsible for the actions of third parties who use the models. Please consult an attorney before using models for commercial purposes.


Improvements

  • Complete entries for context length, and check entries with ?
  • Add number of tokens trained? (see considerations)
  • Add (links to) training code?
  • Add (links to) eval benchmarks?