/SA-MobileNetV3

Shuffle Attention for MobileNetV3

Primary LanguageJupyter Notebook

SA-MobileNetV3

Python package

Shuffle Attention for MobileNetV3

model arch

Reference

Experiments

on ImageNet

Attempt Parameters Madds Top1-acc Sample visualization
MobileNetV3-Large 5.4 M 448.69 M 75.2%
SA-MobileNetV3-Large 3.9 M 445.68 M 76.8%

on CIFAR-10

Attempt Parameters Madds Top1-acc Sample visualization
MobileNetV3-Large 4.2 M 446.16 M
SA-MobileNetV3-Large 2.7 M 443.14 M

on MNist

Attempt Parameters Madds Top1-acc Sample visualization Sample visualization
MobileNetV3-Large 4.2 M 446.16 M 0.997% model arch model arch
SA-MobileNetV3-Large 2.7 M 443.14 M 0.998% model arch model arch

Train

Run the following command for train model on your own dataset:

python train.py --dataset mnist 

Test

Run the following command for evaluation trained model on test dataset:

python test.py --dataset mnist

Inference

Run the following command for classification images:

python inference.py --input /path/to/image.jpg 

Citation

Please cite our paper if you find this repo useful in your research.

@article{
}