/transformerCPI3

Primary LanguagePythonApache License 2.0Apache-2.0

TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments

This repository contains the source code and the data.

TransformerCPI

Setup and dependencies

Dependencies:

  • python 3.6
  • pytorch >= 1.2.0
  • numpy
  • RDkit = 2019.03.3.0
  • pandas
  • Gensim >=3.4.0

Data sets

The data sets with train/test splits are provided as .7z file in a directory called 'data'.

The test set is created specially for label reversal experiments.


Using

1.mol_featurizer.py generates input for TransformerCPI model.

2.main.py trains TransformerCPI model.


Author

Lifan Chen (s18-chenlifan@simm.ac.cn)

Mingyue Zheng(myzheng@simm.ac.cn)

Citation

Lifan Chen, Xiaoqin Tan, Dingyan Wang, Feisheng Zhong, Xiaohong Liu, Tianbiao Yang, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, Mingyue Zheng, TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments, Bioinformatics, , btaa524, https://doi.org/10.1093/bioinformatics/btaa524