/rag

🚀 Retrieval Augmented Generation (RAG) with txtai. Combine search and LLMs to find insights with your own data.

Primary LanguagePythonApache License 2.0Apache-2.0

🚀 RAG with txtai

Version GitHub last commit GitHub issues

This project is a Retrieval Augmented Generation (RAG) Streamlit application backed by txtai.

Retrieval Augmented Generation (RAG) helps generate factually correct content by limiting the context in which a LLM can generate answers. This is typically done with a search query that hydrates a prompt with a relevant context.

This application supports two categories of RAG.

  • Vector RAG: Context supplied via a vector search query
  • Graph RAG: Context supplied via a graph path traversal query

Quickstart

The two primary ways to run this application are as a Docker container and with a Python virtual environment. Running through Docker is recommended, at least to get an idea of the application's capabilities.

Docker

neuml/rag is available on Docker Hub:

This can be run with the default settings as follows.

docker run -d --gpus=all -it -p 8501:8501 neuml/rag

Python virtual environment

The application can also be directly installed and run. It's recommended that this be run within a Python virtual environment.

pip install -r requirements.txt

Start the application.

streamlit run rag.py

Demo

The short video clip above gives a brief overview on this RAG system. It shows a basic vector RAG query. It also shows a Graph RAG query with uploaded data. The following sections cover more on these concepts.

RAG

Vector

Tradional RAG or vector RAG runs a vector search to find the top N most relevant matches to a user's input. Those matches are passed to an LLM and the answer is returned.

The query Who created Linux? runs a vector search for the best matching documents in the Embeddings index. Those matches are then placed into a LLM prompt. The LLM prompt is executed and the answer is returned.

Graph RAG

Graph

Graph RAG is a new method that uses knowledge or semantic graphs to generate a context. Instead of a vector search, graph path queries are run. Graph RAG in the context of this application supports the following methods to generate context.

  • Graph query with the gq: prefix. This is a form of graph query expansion. It starts with a vector search to find the top n results. Those results are then expanded using a graph network stored alongside the vector database.

    • gq: Tell me about Linux
  • Graph path query. This query takes a list of concepts and finds the nodes that match closest to those concepts. A graph path traversal then runs to build a context of nodes related to those concepts. The result of this traversal is passed to the LLM as the context.

    • linux -> macos -> microsoft windows
  • Combination of both. This first runs a graph path query then runs a graph query only within the context of that path traversal.

    • linux -> macos -> microsoft windows gq: Tell me about Linux

Every Graph RAG query response will also show a corresponding graph to help understand how the query works. Each node in the graph is a section (paragraph). The node nodes are generated with a LLM prompt that applies a topic label at upload time.

Adding data to the index

Regardless of whether the RAG application was a new Embeddings index or an existing one, additional data can be added.

Data can be added as follows.

Method
# file path or URL Upload File
# custom notes and text as a string here! Upload Text

When a query begins with a # the URL or file is read by the RAG application and loaded into the index. This method also supports loading text directly into the index. For example # txtai is an all-in-one embeddings database would create a new entry in the Embeddings database.

Configuration parameters

The RAG application has a number of environment variables that can be set to control how the application behaves.

Variable Description Default Value
TITLE Sets the main title of the application 🚀 RAG with txtai
LLM Sets the LLM x86-64: Mistral-7B-OpenOrca-AWQ
arm64 : Mistral-7B-OpenOrca-GGUF
EMBEDDINGS Sets the embeddings database path neuml/txtai-wikipedia-slim
DATA Optionally sets the input data directory None
PERSIST Optionally persist embeddings index None
TOPICSBATCH Optionally batches topic LLM queries None

Note: AWQ models are only supported on x86-64 machines

In the application, these settings can be shown by typing :settings.

See the following examples for setting this configuration with the Docker container. When running within a Python virtual environment, simply set these as environment variables.

Llama 3.1 8B

docker run -d --gpus=all -it -p 8501:8501 -e LLM=hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 neuml/rag

Llama 3.1 8B via Ollama

docker run -d --gpus=all -it -p 8501:8501 --add-host=host.docker.internal:host-gateway \
-e LLM=ollama/llama3.1:8b-instruct-q4_K_M -e OLLAMA_API_BASE=http://host.docker.internal:11434 \
neuml/rag

GPT-4o

docker run -d --gpus=all -it -p 8501:8501 -e LLM=gpt-4o -e OPENAI_API_KEY=your-api-key neuml/rag

Run with another embeddings index

docker run -d --gpus=all -it -p 8501:8501 -e EMBEDDINGS=neuml/arxiv neuml/rag

Build an embeddings index with a local directory of files

docker run -d --gpus=all -it -p 8501:8501 -e DATA=/data/path -v local/path:/data/path neuml/rag

Persist embeddings and cache models

docker run -d --gpus=all -it -p 8501:8501 -e DATA=/data/path -e EMBEDDINGS=/data/embeddings \
-e PERSIST=/data/embeddings -e HF_HOME=/data/modelcache -v localdata:/data neuml/rag

See the documentation for the LLM pipeline and Embeddings for more information.