This is our Pytorch implementation of CorrDrop.
Corrdrop: Correlation Based Dropout for Convolutional Neural Networks (ICASSP 2020)
Correlation-based structural dropout for convolutional neural networks (Pattern Recognition)
Set your data directory in ./train/dataLoader.py
data_dir = './data'
train without cutout
python3 train.py --dropway 'SCD' --dataset 'cifar-10' --depth 20 --gpu_ids 0 --batch_size 128 --epoch 200 --cutout 0 --exp_dir './exp/scd' --model 'resnet' --p 0.2 --blocksize 5
train with cutout
python3 train.py --dropway 'SCD' --dataset 'cifar-10' --depth 20 --gpu_ids 0 --batch_size 128 --epoch 200 --cutout 1 --exp_dir './exp/scd' --model 'resnet' --p 0.03 --blocksize 5
train without cutout
python3 train.py --dropway 'CCD' --dataset 'cifar-100' --depth 20 --gpu_ids 0 --batch_size 128 --epoch 200 --cutout 0 --exp_dir './exp/ccd' --model 'resnet' --p 0.2
train with cutout
python3 train.py --dropway 'CCD' --dataset 'cifar-100' --depth 20 --gpu_ids 0 --batch_size 128 --epoch 200 --cutout 1 --exp_dir './exp/ccd' --model 'resnet' --p 0.1
@inproceedings{zeng2020corrdrop,
title={Corrdrop: Correlation based dropout for convolutional neural networks},
author={Zeng, Yuyuan and Dai, Tao and Xia, Shu-Tao},
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={3742--3746},
year={2020},
organization={IEEE}
}
@article{zeng2021correlation,
title={Correlation-based structural dropout for convolutional neural networks},
author={Zeng, Yuyuan and Dai, Tao and Chen, Bin and Xia, Shu-Tao and Lu, Jian},
journal={Pattern Recognition},
volume={120},
pages={108117},
year={2021},
publisher={Elsevier}
}