python3 -m venv env
source env/bin/activate
pip install python-chess==0.31.4 pytorch-lightning torch
This requires a C++17 compiler.
Windows:
compile_data_loader.bat
Linux/Mac:
sh compile_data_loader.bat
source env/bin/activate
python train.py train_data.bin val_data.bin
python train.py --resume_from_checkpoint <path> ...
python train.py --gpus 1 ...
Using either a checkpoint (.ckpt) or serialized model (.pt),
you can export to SF NNUE format. This will convert last.ckpt
to nn.nnue, which you can load directly in SF.
python serialize.py last.ckpt nn.nnue
Import an existing SF NNUE network to the pytorch network format.
python serialize.py nn.nnue converted.pt
pip install tensorboard
tensorboard --logdir=logs
Then, go to http://localhost:6006/
- Sopel - for the amazing fast sparse data loader
- connormcmonigle - https://github.com/connormcmonigle/seer-nnue, and loss function advice.
- syzygy - http://www.talkchess.com/forum3/viewtopic.php?f=7&t=75506
- https://github.com/DanielUranga/TensorFlowNNUE
- https://hxim.github.io/Stockfish-Evaluation-Guide/
- dkappe - Suggesting ranger (https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer)