该站点整理了”因果推理、不确定性估计“相关研究方向的论文、代码、博客等学习资源。
- Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE, 109(5), 612-634.(因果表征学习综述)
- Lu, C., Wu, Y., Hernández-Lobato, J. M., & Schölkopf, B. (2021). Invariant causal representation learning for out-of-distribution generalization. In International Conference on Learning Representations.(不变因果表征学习)
👆 BACK to Table of Contents -->
相关论文可以在分布外泛化文件夹下查看
- Xu, R., Zhang, X., Shen, Z., Zhang, T., & Cui, P. (2022, June). A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization. In International Conference on Machine Learning (pp. 24803-24829). PMLR.(协变量偏移)
- Liu, C., Sun, X., Wang, J., Tang, H., Li, T., Qin, T., ... & Liu, T. Y. (2021). Learning causal semantic representation for out-of-distribution prediction. Advances in Neural Information Processing Systems, 34, 6155-6170.(因果语义表示学习)
- Zhang, X., Xu, Z., Xu, R., Liu, J., Cui, P., Wan, W., ... & Li, C. (2022). Towards domain generalization in object detection. arXiv preprint arXiv:2203.14387.(目标检测中的域泛化)
- Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., & Cui, P. (2021). Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624.(综述)
- Li, X., Dai, Y., Ge, Y., Liu, J., Shan, Y., & Duan, L. Y. (2022). Uncertainty modeling for out-of-distribution generalization. arXiv preprint arXiv:2202.03958.(OODG不确定性建模)
👆 BACK to Table of Contents -->
相关论文可以在稳定学习文件夹下查看
- Zhang, X., Cui, P., Xu, R., Zhou, L., He, Y., & Shen, Z. (2021). Deep stable learning for out-of-distribution generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5372-5382).(StableNet)
- Liu, J., Hu, Z., Cui, P., Li, B., & Shen, Z. (2021, July). Heterogeneous risk minimization. In International Conference on Machine Learning (pp. 6804-6814). PMLR.(异质风险最小化)
- Cui, P., & Athey, S. (2022). Stable learning establishes some common ground between causal inference and machine learning. Nature Machine Intelligence, 4(2), 110-115.(稳定学习与因果推断和机器学习之间的共同点)
👆 BACK to Table of Contents -->
- Wang, T., Zhou, C., Sun, Q., & Zhang, H. (2021). Causal attention for unbiased visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3091-3100).(因果注意力)
- Niu, Y., Tang, K., Zhang, H., Lu, Z., Hua, X. S., & Wen, J. R. (2021). Counterfactual vqa: A cause-effect look at language bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12700-12710).(反事实VQA)
- Yang, X., Zhang, H., & Cai, J. (2021). Deconfounded image captioning: A causal retrospect. IEEE Transactions on Pattern Analysis and Machine Intelligence.(去除混淆偏差)
- Nam, J., Cha, H., Ahn, S., Lee, J., & Shin, J. (2020). Learning from failure: De-biasing classifier from biased classifier. Advances in Neural Information Processing Systems, 33, 20673-20684.(从有偏分类器学习去偏分类器)
👆 BACK to Table of Contents -->
- Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... & Zhu, X. X. (2021). A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.
- Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., ... & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243-297.
- Uncertainty in Deep Learning(Gal博士论文)
- He, W., & Jiang, Z. (2023). A Survey on Uncertainty Quantification Methods for Deep Neural Networks: An Uncertainty Source Perspective. arXiv preprint arXiv:2302.13425.
- Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Machine Learning, 110, 457-506.(数据和模型不确定性)
👆 BACK to Table of Contents -->
- Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.(将Dropout看做贝叶斯近似的经典论文)
- Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. Advances in neural information processing systems, 30.(不确定性估计必读论文,将不确定性分为数据不确定性以及模型不确定性,并介绍了在分类和回归中不确定性估计的建模方法)
- Louizos, C., & Welling, M. (2017, July). Multiplicative normalizing flows for variational bayesian neural networks. In International Conference on Machine Learning (pp. 2218-2227). PMLR.(变分贝叶斯神经网络,EDL论文中的对比方法)
👆 BACK to Table of Contents -->
- Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30.(集成方法的开山之作)
👆 BACK to Table of Contents -->
- Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classification uncertainty. Advances in neural information processing systems, 31.(证据分类)
- Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. Advances in Neural Information Processing Systems, 33, 14927-14937.(证据回归)
- Sensoy, M., Kaplan, L., Cerutti, F., & Saleki, M. (2020, April). Uncertainty-aware deep classifiers using generative models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5620-5627).(EDL作者的另一篇论文)
- Malinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks. Advances in neural information processing systems, 31.(使用狄利克雷分布建模不确定性的另一种方法)
- Ulmer, D. (2021). A survey on evidential deep learning for single-pass uncertainty estimation. arXiv preprint arXiv:2110.03051.(证据不确定性综述)
- Zhao, X., Ou, Y., Kaplan, L., Chen, F., & Cho, J. H. (2019). Quantifying classification uncertainty using regularized evidential neural networks. arXiv preprint arXiv:1910.06864.(证据基础上添加正则化项)
👆 BACK to Table of Contents -->
- Kwon, Y., Won, J. H., Kim, B. J., & Paik, M. C. (2020). Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation. Computational Statistics & Data Analysis, 142, 106816.(贝叶斯不确定性)
- Li, H., Nan, Y., Del Ser, J., & Yang, G. (2022). Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Computing and Applications, 1-15.(证据不确定性)
- Zou, K., Yuan, X., Shen, X., Chen, Y., Wang, M., Goh, R. S. M., ... & Fu, H. (2023). EvidenceCap: Towards trustworthy medical image segmentation via evidential identity cap. arXiv preprint arXiv:2301.00349.(证据不确定性)
- Zhou, X., Yue, X., Xu, Z., Denoeux, T., & Chen, Y. (2021, December). Deep neural networks with prior evidence for bladder cancer staging. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1221-1226). IEEE.(证据医学影像分割)
👆 BACK to Table of Contents -->
- Harakeh, A., Smart, M., & Waslander, S. L. (2020, May). Bayesod: A bayesian approach for uncertainty estimation in deep object detectors. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 87-93). IEEE.(目标检测中的贝叶斯不确定性估计)
- Feng, D., Harakeh, A., Waslander, S. L., & Dietmayer, K. (2021). A review and comparative study on probabilistic object detection in autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 23(8), 9961-9980.(自动驾驶中的概率目标检测)
- Hang, Q., Li, Z., Dong, Y., & Yue, X. (2022, November). Uncertainty-Aware Deep Open-Set Object Detection. In Rough Sets: International Joint Conference, IJCRS 2022, Suzhou, China, November 11–14, 2022, Proceedings (pp. 161-175). Cham: Springer Nature Switzerland.(证据目标检测)
- Miller, D. (2021). Epistemic uncertainty estimation for object detection in open-set conditions (Doctoral dissertation, Queensland University of Technology).(开集目标检测)
- Gasperini, S., Haug, J., Mahani, M. A. N., Marcos-Ramiro, A., Navab, N., Busam, B., & Tombari, F. (2021). CertainNet: Sampling-free uncertainty estimation for object detection. IEEE Robotics and Automation Letters, 7(2), 698-705.(基于Centernet的不确定度量)
- Nallapareddy, M. R., Sirohi, K., Drews-Jr, P. L., Burgard, W., Cheng, C. H., & Valada, A. (2023). EvCenterNet: Uncertainty Estimation for Object Detection using Evidential Learning. arXiv preprint arXiv:2303.03037.(证据深度学习目标检测,基于Centernet)
- He, Y., Zhu, C., Wang, J., Savvides, M., & Zhang, X. (2019). Bounding box regression with uncertainty for accurate object detection. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 2888-2897).(回归不确定性目标检测)
👆 BACK to Table of Contents -->
- Bao, W., Yu, Q., & Kong, Y. (2021). Evidential deep learning for open set action recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 13349-13358).(开集识别)
- Corbière, C., Lafon, M., Thome, N., Cord, M., & Pérez, P. (2021, September). Beyond First-Order Uncertainty Estimation with Evidential Models for Open-World Recognition. In ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning.(正则化项)
- Corbière, C., Lafon, M., Thome, N., Cord, M., & Pérez, P. (2021, September). Beyond First-Order Uncertainty Estimation with Evidential Models for Open-World Recognition. In ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning.(证据用于开放世界识别)
- Mundt, M., Pliushch, I., Majumder, S., & Ramesh, V. (2019). Open set recognition through deep neural network uncertainty: Does out-of-distribution detection require generative classifiers?. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.(OOD检测)
- Zhou, T., Han, T., & Droguett, E. L. (2022). Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliability Engineering & System Safety, 224, 108525.(贝叶斯故障诊断)
👆 BACK to Table of Contents -->
- Chen, L., Lou, Y., He, J., Bai, T., & Deng, M. (2022, June). Evidential neighborhood contrastive learning for universal domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 6, pp. 6258-6267).(证据领域对比学习)
- Qiao, F., & Peng, X. (2021). Uncertainty-guided model generalization to unseen domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6790-6800).(不确定性指导的数据增广)
- Zhao, L., Liu, T., Peng, X., & Metaxas, D. (2020). Maximum-entropy adversarial data augmentation for improved generalization and robustness. Advances in Neural Information Processing Systems, 33, 14435-14447.(对抗数据增广-最大熵)
- Li, X., Dai, Y., Ge, Y., Liu, J., Shan, Y., & Duan, L. Y. (2022). Uncertainty modeling for out-of-distribution generalization. arXiv preprint arXiv:2202.03958.(OODG的不确定性建模)
👆 BACK to Table of Contents -->
- Han, Z., Zhang, C., Fu, H., & Zhou, J. T. (2022). Trusted multi-view classification with dynamic evidential fusion. IEEE transactions on pattern analysis and machine intelligence.(证据多视图分类)
- Ma, H., Han, Z., Zhang, C., Fu, H., Zhou, J. T., & Hu, Q. (2021). Trustworthy multimodal regression with mixture of normal-inverse gamma distributions. Advances in Neural Information Processing Systems, 34, 6881-6893.(证据多模态回归)
- Geng, Y., Han, Z., Zhang, C., & Hu, Q. (2021, May). Uncertainty-aware multi-view representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 9, pp. 7545-7553).(多视图回归-数据不确定性建模)
- Zhang, Q., Wu, H., Zhang, C., Hu, Q., Fu, H., Zhou, J. T., & Peng, X. (2023). Provable Dynamic Fusion for Low-Quality Multimodal Data. arXiv preprint arXiv:2306.02050.(基于能量函数的不确定性估计)
👆 BACK to Table of Contents -->
- Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International conference on machine learning (pp. 1321-1330). PMLR.(分类校准)
- Kuleshov, V., Fenner, N., & Ermon, S. (2018, July). Accurate uncertainties for deep learning using calibrated regression. In International conference on machine learning (pp. 2796-2804). PMLR.(回归校准)
- Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., & Dokania, P. (2020). Calibrating deep neural networks using focal loss. Advances in Neural Information Processing Systems, 33, 15288-15299.(Focal Loss 校准分类)
- Krishnan, R., & Tickoo, O. (2020). Improving model calibration with accuracy versus uncertainty optimization. Advances in Neural Information Processing Systems, 33, 18237-18248.(考虑不确定性校准模型)
- Thulasidasan, S., Chennupati, G., Bilmes, J. A., Bhattacharya, T., & Michalak, S. (2019). On mixup training: Improved calibration and predictive uncertainty for deep neural networks. Advances in Neural Information Processing Systems, 32.(mixup提高模型校准性能)
👆 BACK to Table of Contents -->
相关论文的代码以及数据集可以在Paper With Code 搜索获取,如果Paper With Code 中没有收录,可直接在GitHub输入论文关键字搜索相关代码
👆 BACK to Table of Contents -->
- e-CARE: 可解释的因果推理评测 (qq.com)
- 【Valse - 崔鹏】Out-of-Distribution 分布外泛化 - 知乎 (zhihu.com)
- 崔鹏团队:万字长文梳理「稳定学习」全景图 - 知乎 (zhihu.com)
- 【综述】离群/异常/新类检测?开集识别?分布外检测?一文搞懂其间异同! - 知乎 (zhihu.com)
- 因果表征学习最新综述:连接因果科学和机器学习的桥梁 - 知乎 (zhihu.com)
- 因果推断:因果表征学习的CV落地 - 知乎 (zhihu.com)
👆 BACK to Table of Contents -->
- (184条消息) What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 计算机视觉用于贝叶斯深度学习的不确定性_Xieyuanli_Chen的博客-CSDN博客
- Bayesian inference problem, MCMC and variational inference | by Joseph Rocca | Towards Data Science
- Uncertainty Estimation in CV - 知乎 (zhihu.com)
- What my deep model doesn't know... | Yarin Gal - Blog | Oxford Machine Learning
- Uncertainty in Deep Learning. How To Measure? | Towards Data Science
- https://www.bilibili.com/video/BV1RJ411D7QA/
- 如何创造可信任的机器学习模型?先要理解不确定性 (qq.com)
- 从最大似然到EM算法:一致的理解方式 - 科学空间|Scientific Spaces (kexue.fm)
- ICML高引模型校准论文,一个好的工作是怎样的 - 知乎 (zhihu.com)
👆 BACK to Table of Contents -->
- Email: senlinbao@gmail.com