/KorSQuAD-pl

KorSQuAD-pl provides transfer learning codes about korean dataset KorQuAD and english dataset SQuAD for extractive question answering. KorSQuAD-pl implemented through pytorch lightning.

Primary LanguageJupyter NotebookMIT LicenseMIT

KorSQuAD-pl

Korean(한국어)

KorSQuAD-pl provides code that enables transfer learning experiments on KorQuAD and SQuAD, which are Korean and English Question Answering task datasets.




KorSQuAD-pl has the following features.

Dependencies

  • torch>=1.9.0
  • pytorch-lihgtning==1.3.8
  • transformers>=4.8.0
  • kobert-transformers==0.5.1
  • sentencepiece>=0.1.96
  • scikit-learn
  • numpy

Usage

1. Download Dataset

The datasets supported by KorSQuAD-pl are as follows.

Dataset Link
KorQuAD 1.0 LINK
KorQuAD 2.0 (Preparing) LINK
SQuAD 1.1 LINK
SQuAD 2.0 LINK
  • In the case of KorQuAD dataset, if you run the following command, the dataset is automatically downloaded and saved in the ./data path. (Currently, code for downloading KorQuAD 2.0 dataset is not yet complete. I will update it as soon as possible.)
    python download_korquad.py --download_dir ./data
  • In the case of SQuAD dataset, if you run the following command, the dataset is automatically downloaded and saved in the ./data path.
    python download_squad.py --download_dir ./data

2. Training and Evaluation

Transfer learning is performed and evaluating through the following command.

  • --model_type : type of model, e.g., bert
  • --model_name_or_path : name or path of the model, e.g., bert-base-uncased
  • --data_name : dataset name to use training and evaluating, e.g., korquad_v1.0, korquad_v2.0, squad_v1.1, squad_v2.0
  • --do_train : training run
  • --do_eval : evaluating run
  • --gpu_ids : GPU ids to be used when performing transfer learning, e.g., 0 mean using GPU 0, 0,3 mean using GPU 0 and 3
  • --max_seq_length : the maximum total input sequence length after WordPiece tokenization
  • --num_train_epochs : number of epochs in training
  • --batch_size : batch size at training
  • --learning_rate : optimizer for learning rate.
  • --adam_epsilon : huggingface AdamW optimizer's epsilon value
python3 run_qa.py --model_type bert \
                  --model_name_or_path bert-base-uncased \
                  --data_name squad_v2.0 \
                  --do_train \
                  --do_eval \
                  --gpu_ids 0 \
                  --max_seq_length 384 \
                  --num_train_epochs 2 \
                  --batch_size 16 \
                  --learning_rate 3e-5 \
                  --adam_epsilon 1e-8

3. Distributed Training and Evaluation

If you want to perform distributed training, use the following command.

python3 run_qa.py --model_type bert \
                  --model_name_or_path bert-large-uncased-whole-word-masking \
                  --data_name squad_v2.0 \
                  --do_train \
                  --gpu_ids 0,1,2,3 \
                  --max_seq_length 384 \
                  --num_train_epochs 2 \
                  --batch_size 4 \
                  --learning_rate 3e-5 \
                  --adam_epsilon 1e-8

When performing distributed training, crash take place when evaluating. So, you need to command to change single GPU as follows. In other words, if you use a multi GPU, training and evaluating cannot be performed at the same time.

python3 run_qa.py --model_type bert \
                  --model_name_or_path bert-large-uncased-whole-word-masking \
                  --data_name squad_v2.0 \
                  --do_eval \
                  --gpu_ids 0 \
                  --max_seq_length 384 \
                  --num_train_epochs 2 \
                  --batch_size 4 \
                  --learning_rate 3e-5 \
                  --adam_epsilon 1e-8

4. Tensorboard with.PyTorch Lightning

All checkpoint and tensorboard log files are stored in the ./model folder.

Therefore, you can use tensorboard by specifying --logdir as follows.

tensorboard --logdir ./model/squad_v2.0/bert-base-uncased/

Experiment Settings

Hyper parameters and GPU settings for experiments are as follows:

  • For models of small and base size, experiments are performed using a single GPU.
  • For models of large size, experiments are performed through distributed training. In other words, this cases are performed at Multi GPU environment.(Specifically, 4 GPUs of 16GB were used.)

1. KorQuAD

Hyper Parameter Value
null_score_diff_threshold 0.0
max_seq_length 512
doc_stride 128
max_query_length 64
n_best_size 20
max_answer_length 30
batch_size 16(small size, base size), 4(large size)
num_train_epochs 3
weight_decay 0.01
adam_epsilon 1e-6(KoELECTRA), 1e-8(others)
learning_rate 5e-5

2. SQuAD

Hyper Parameter Value
null_score_diff_threshold 0.0
max_seq_length 384
doc_stride 128
max_query_length 64
n_best_size 20
max_answer_length 30
batch_size 16(small size, base size), 4(large size)
num_train_epochs 3
weight_decay 0.01
adam_epsilon 1e-6(ALBERT, RoBERTa, ELECTRA), 1e-8(others)
learning_rate 3e-5

Result of Experiments

1. KorQuAD 1.0

Model Type model_name_or_path Model Size Exact Match (%) F1 Score (%)
BERT bert-base-multilingual-cased Base 66.92 87.18
KoBERT monologg/kobert Base 47.73 75.12
DistilBERT distilbert-base-multilingual-cased Small 62.91 83.28
DistilKoBERT monologg/distilkobert Small 54.78 78.85
KoELECTRA monologg/koelectra-small-v2-discriminator Small 81.45 90.09
monologg/koelectra-base-v2-discriminator Base 83.94 92.20
monologg/koelectra-small-v3-discriminator Small 81.13 90.70
monologg/koelectra-base-v3-discriminator Base 83.92 92.92

2. KorQuAD 2.0 (Preparing)

Model Type model_name_or_path Model Size Exact Match (%) F1 Score (%)
BERT bert-base-multilingual-cased Base
KoBERT monologg/kobert Base
DistilBERT distilbert-base-multilingual-cased Small
DistilKoBERT monologg/distilkobert Small
KoELECTRA monologg/koelectra-small-v2-discriminator Small
monologg/koelectra-base-v2-discriminator Base
monologg/koelectra-small-v3-discriminator Small
monologg/koelectra-base-v3-discriminator Base

3. SQuAD 1.1

Model Type model_name_or_path Model Size Exact Match (%) F1 Score (%)
BERT bert-base-cased Base 80.38 87.99
bert-base-uncased Base 80.03 87.52
bert-large-uncased-whole-word-masking Large 85.51 91.88
DistilBERT distilbert-base-cased Small 75.94 84.30
distilbert-base-uncased Small 76.72 84.78
ALBERT albert-base-v1 Base 79.46 87.70
albert-base-v2 Base 79.25 87.34
RoBERTa roberta-base Base 83.04 90.48
roberta-large Large 85.18 92.25
ELECTRA google/electra-small-discriminator Small 77.11 85.41
google/electra-base-discriminator Base 84.70 91.30
google/electra-large-discriminator Large 87.14 93.41

4. SQuAD 2.0

Model Type model_name_or_path Model Size Exact Match (%) F1 Score (%)
BERT bert-base-cased Base 70.52 73.79
bert-base-uncased Base 72.02 75.35
bert-large-uncased-whole-word-masking Large 78.97 82.14
DistilBERT distilbert-base-cased Small 63.89 66.97
distilbert-base-uncased Small 65.40 68.03
ALBERT albert-base-v1 Base 74.75 77.77
albert-base-v2 Base 76.48 79.92
RoBERTa roberta-base Base 78.91 82.20
roberta-large Large 80.83 84.29
ELECTRA google/electra-small-discriminator Small 70.55 73.64
google/electra-base-discriminator Base 78.70 82.17

TODO list

  • add KorQuAD 2.0

References


If you have any additional questions, please register an issue in this repository or contact sehunhu5247@gmail.com.