- Enviroment:
- Python 3
- C++ compiler
- swig 3
Assume you have figured out the above environment, the most convenient way for installation is via the pip command.
pip install git+https://github.com/SelfExplainML/pyunidoe.git
More details can be found in documentation.
x = np.array([[1, 2],
[3, 3],
[2, 1]])
pydoe.design_eval(x,crit="CD2")
import numpy as np
import pyunidoe as pydoe
pydoe.design_query(n=12, s=4, q=6, crit="CD2", show_crit=True)
stat=pydoe.gen_ud(n=12, s=4, q=6, init="rand", crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
stat = pydoe.gen_aud(xp=x1, n=24, s=4, q=6, crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
stat = pydoe.gen_aud_col(xp=x1, n=12, s=5, q=6, crit="CD2", maxiter=100, vis=True)
print("The initial design: ")
print(stat["initial_design"])
print("The final design: ")
print(stat["final_design"])
x1_multi = pydoe.gen_ud_ms(n=12, s=4, q=6, crit="CD2", maxiter=100, nshoot=1000, n_jobs=10, vis=False)
print(pydoe.design_eval(x1_multi,crit="CD2"))
x2_multi = pydoe.gen_aud_ms(x1_multi, n=24, s=4, q=6, crit="CD2", maxiter=100, nshoot=1000, n_jobs=10, vis=False)
print(pydoe.design_eval(x2_multi,crit="CD2"))
x3_multi = pydoe.gen_aud_col_ms(x1_multi, n=12, s=5, q=6, crit="CD2", maxiter=100, nshoot=1000, n_jobs=10, vis=False)
print(pydoe.design_eval(x3_multi,crit="CD2"))
More examples can be referred to the documentation
If you find any bugs or have any suggestions, please contact us via email: yangzb2010@connect.hku.hk or ajzhang@umich.edu.