This repository provides implementations introduced in "Deeply learning molecular structure property relationships using attention- and gate-augmented graph convolutional network".
We used several scripts and a 'Harvard Clean Energy Project (CEP)' dataset in https://github.com/HIPS/neural-fingerprint.
mkdir results mkdir save
cd database python smilesToGraph.py ZINC 10000 1 python smilesToGraph.py CEP 1000 1
python calcProperty.py
python train.py model property #layers #epoch initial_learning_rate decay_rate
python train.py GCN logP 3 100 0.001 0.95
models : GCN, GCN+a, GCN+g, GCN+a+g, GGNN
property : logP, TPSA, QED, SAS (ZINC dataset) and pve (CEP dataset)