/LWSIS

An official implementation of AAAI2023 paper "LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for Autonomous Driving"

Primary LanguagePythonOtherNOASSERTION

LWSIS

An official implementation of AAAI2023 paper "LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for Autonomous Driving"

Models

Model Backbone Annotations Lr_schedule Mask_AP Download
BoxInst R-50 box 1x 33.65 link(访问码:pmw0)
BoxInst R-101 box 1x 34.39 link
PointSup R-50 box+point 1x 43.80 link
PointSup R-101 box+point 1x 44.72 link
LWSIS+BoxInst R-50 3dbox+pc 1x 35.65 link(访问码:hy6a)
LWSIS+BoxInst R-101 3dbox+pc 1x 36,22 link
LWSIS+PointSup R-50 3dbox+pc 1x 45.46 link
LWSIS+PointSup R-101 3dbox+pc 1x 46.17 link

Here we explain different annotations used in the exp. 'box' means only using the 2D bounding box annotation for each instance, 'point' means using a specific number of points with human annotation indicating the background/foreground, '3dbox' means using the 3D bounding box annotations for each instance and 'pc' means the original point cloud.

Install

First install Detectron2 following the official guide: INSTALL.md.

Please use Detectron2 with commit id 9eb4831 if you have any issues related to Detectron2.

Then build LWSIS with:

git clone git@github.com:Serenos/LWSIS.git
cd LWSIS
python setup.py build develop

Quick Start

  • Download the nuscenes origin datasets to ${HOME}/datasets/. The folder structure shall be like this:

    • nuscenes
      • annotations
      • lidarseg
      • maps
      • samples
      • sweeps
      • v1.0-trainval
      • v1.0-mini
  • Download nuInsSeg3d_train(访问码:4aml), nuInsSeg3d_val(访问码:luw8) and put it into the nuscenes/annotations folder.

  • Training

    bash tools/train.sh configs/BoxInst/MS_R_50_1x_nuscenes.yaml Boxinst_LWSIS 000
    
  • Evaluation

    bash tools/test.sh configs/BoxInst/MS_R_50_1x_nuscenes.yaml output/Boxinst_LWSIS/000/model_final.pth 
    

nuInsSeg Dataset and devkit

We supplement instance mask annotation for nuScenes dataset. For more detail, please follow the nuinsseg-devkit.

Acknowledgements

The authors are grateful to School of Computer Science, Beijing Institute of Technology, Shanghai AI Laboratory, Inceptio, 4SKL-IOTSC, CIS, University of Macau.

The code is based on Adlaidet.