This project introduces FukuiNet, a machine learning model leveraging Chebyshev graph convolutions within a Kernel-based Attention Network (KAN) to predict Fukui indices for assessing molecular reactivity.
- Objective: To develop an efficient and accurate model for predicting molecular reactivity using advanced graph-based techniques and kernel-based attention mechanisms.
- Key Features: Utilizes Chebyshev polynomials and Kernel-based Attention Networks for enhanced performance and speed compared to traditional methods.
├── LICENSE <- License information
├── Makefile <- Convenience commands (e.g., `make train`)
├── README.md <- Project overview and instructions
├── data
│ ├── external <- Third-party data
│ ├── interim <- Transformed data
│ ├── processed <- Final datasets for modeling
│ └── raw <- Original data
│
├── docs <- Documentation
│
├── models <- Trained models and predictions
│
├── notebooks <- Jupyter notebooks for exploration
│
├── quantum_data_pre <- Scripts for quantum chemical calculations
│
├── pyproject.toml <- Project configuration
│
├── references <- Data dictionaries and manuals
│
├── reports <- Analysis reports and figures
│
├── requirements.txt <- Dependencies
│
├── setup.cfg <- Flake8 configuration
│
└── fukuinet <- Source code
├── __init__.py <- Makes `fukuinet` a Python module
├── config.py <- Configuration settings
├── dataset.py <- Data handling scripts
├── features.py <- Feature engineering
├── modeling
│ ├── __init__.py
│ ├── predict.py <- Model inference code
│ └── train.py <- Model training code
└── plots.py <- Visualization scripts
- Clone the repository:
git clone https://github.com/your-repo/fukuiNet.git
- Install dependencies:
pip install -r requirements.txt
- Prepare data using scripts in
quantum_data_pre
. - Train the model using
modeling/train.py
. - Evaluate predictions with
modeling/predict.py
. - Visualize results using
plots.py
.
The dataset QM_137k.parquet
is an enhanced version of QM9 with additional features for reactivity predictions, including the Conduction Dual Descriptor (CDD).