tfmars is the TensorFlow's implementation of Mobile-aware Convolutional Neural Network for Sensor-based Human Activity Recognition, a sibling of tfgarden. In this repository, some CNN models implemented in tfgarden have been implemented as Attention insertable models. Also, MarNASNets has been implemented.
MARS means Mobile-aware Activity Recognition modelS.
- Simple CNN: used on the paper by Li et al.
- VGG16
- Inception v3
- ResNet 18
- PyramidNet 18
- Xception
- DenseNet 121
- MobileNet
- MobileNetV2
- MobileNetV3 Small
- NASNet Mobile
- MnasNet
- EfficientNet B0
- EfficientNet lite0
MarNASNets are the CNN architectures designed by using Bayesian-optimization Neural Architecture Search via Keras Tuner. MarNASNets are mobile-aware models that achieves higher accuracy with fewer parameters than existing models. There are variations with different search spaces (A - E).
pip install git+https://github.com/Shakshi3104/tfmars.git
tensorflow >= 2.4.1
Model | Accuracy [%] 1 | Size [MB] 2 | MFLOPs | Latency [ms] 3 | CPU load 3 |
---|---|---|---|---|---|
Simple CNN | 87.71 | 5.31 | 9.22 | 4.37 | 1.59 |
VGG16 | 89.54 | 154.00 | 357.13 | 5.64 | 1.83 |
Inception-v3 | 91.85 | 57.22 | 287.16 | 3.69 | 1.51 |
ResNet 18 | 90.53 | 15.41 | 173.72 | 2.67 | 1.50 |
PyramidNet 18 | 91.48 | 1.63 | 19.49 | 2.12 | 1.65 |
Xception | 92.31 | 82.69 | 613.98 | 4.09 | 2.10 |
DenseNet 121 | 92.55 | 22.31 | 192.97 | 2.84 | 2.11 |
MobileNet | 91.22 | 23.96 | 155.47 | 2.83 | 1.88 |
MobileNetV2 | 90.62 | 26.91 | 147.96 | 2.96 | 1.61 |
MobileNetV3 Small | 91.45 | 11.60 | 35.19 | 2.48 | 1.42 |
NASNet Mobile | 86.49 | 16.55 | 147.23 | 3.23 | 2.65 |
MnasNet | 89.75 | 37.44 | 179.77 | 3.12 | 1.66 |
EfficientNet B0 | 92.50 | 45.70 | 221.68 | 3.32 | 1.59 |
EfficientNet lite0 | 91.52 | 43.11 | 220.17 | 3.21 | 1.89 |
MarNASNet-A | 91.68 | 1.31 | 43.29 | 2.30 | 1.68 |
MarNASNet-B | 91.79 | 0.42 | 4.79 | 2.21 | 1.47 |
MarNASNet-C | 92.60 | 3.08 | 46.20 | 2.22 | 1.83 |
MarNASNet-D | 91.87 | 1.25 | 19.83 | 2.25 | 1.86 |
MarNASNet-E | 91.70 | 8.16 | 166.26 | 2.86 | 1.46 |
Under construction...
Footnotes
-
Verifying accuracy with HASC-PAC2016 (HASC). ↩
-
Size of MLModel file. ↩
-
Testing conducted using iPhone 12 mini with iOS 15.2. Activitybench 3.9.4 tested with MLComputeUnits=all. Performance tests are conducted using specific computer systems and reflect the approximate performance of iPhone 12 mini. ↩ ↩2