Source Separation Project Run main.py to train the model. Use TensorBoard to view results. ### Data Setup ### # WSJ0 1) Download wsj0.tar.gz (https://catalog.ldc.upenn.edu/ldc93s6a) 2) tar -xf wsj0.tar.gz -C data/wsj0_sph/ 2) Install sph2pipe (https://www.ldc.upenn.edu/language-resources/tools/sphere-conversion-tools) 3) python preprocess_wsj0.py (requires sph2pipe) # LibriSpeech 1) Download test-clean.tar.gz and train-clean-100.tar.gz (http://www.openslr.org/12/) 2) tar -xf *clean*.tar.gz -C data/ 3) python prepocess_libri.py # RealTalkLibri (RTL) 1) Download rtl.tar.gz 2) tar -xf rtl.tar.gc -C data/ ### Code Overview ### # Hyperparameters * hyperparameters - General Hyperparameters * CNNparameters - CNN specific parameters * RNNparameters - RNN specific parameters # Core * main - Construct the graph and train it * graph - Build the neural network model * train - Train the network # Data * loader.py - Make batches and prepare labels * rtl_loader.py - Make batches and prepare labels for RTL data * data_lib - transform between waveform, spectrogram, and neural network input representations * bss_eval - Metric for calculating proxy_SDR * mir_bss_eval - Metric for calculating SDR # Model Results & Visualizations * summaries - image, audio, scalar summary plots * embedding_summary - Visualizing embeddings in PCA space (in TensorBoard) # Misc * kmeans - kmeans implementation * helper - various useful functions * utilities - save hparams, track experiment number # Versions: Python: 3.6.1 TensorFlow: 1.6.0-dev20180116 CUDA: 9.0, V9.0.176 cudNN: 8.0