Scripts used in SPARK project For variant calling/de novo filtering/annotation
Variant Calling pipeline based on GATK Best Practices v3.6 (https://software.broadinstitute.org/gatk/best-practices/workflow?id=11145). Exome-pipeline Dependencies are stored in WES_Pipeline_References.b37.biocluster.sh Functions are stored in exome.lib.sh
ExmAln.1a.Align_Fastq_to_Bam_with_BWAmem.sh (BWA V0.7.15; picard V2.7.1)
ExmAln.2.HaplotypeCaller_GVCFmode.sh (GATK V3.6)
ExmVC.1hc.GenotypeGVCFs.sh (GATK V3.6)
ExmVC.2.MergeVCF.sh
4. Variant Quailty Recalibration with VQSR (this step seems already been removed from current version of best practices)
ExmVC.3.RecalibrateVariantQuality.sh (GATK V3.6)
ExmVC.4.AnnotateVCF.sh
ExmVC.5.MakeKinTestFilesFromVCF.sh (Kinship test, vcftools v0.1.15, PLINK1.9)
ExmAln.8.DepthofCoverage.sh (D15 vs Mean)
ExmQC.VCFsummary_stats.py (some variants statistics for vcf)
Exome-Filters
adhoc.1.vcf2trio.py
Get_Denovo.py #this script take trio vcfs and produce de novo variants according to filters stored in .yml files
DENOVO_FILTER.yml # More stringent filters
DENOVO_FILTER.Tier2.yml # Less stringent filters
https://github.com/ShenLab/igv-classifier.git