This is the official inference code for:
Wenzheng Chen, Jun Gao*, Huan Ling*, Edward J. Smith*, Jaakko Lehtinen, Alec Jacobson, Sanja Fidler
[Paper] [Project Page]
This code requires PyTorch 1.1.0 and python 3+. Please install dependencies by
pip install -r requirments.txt
cd dib-render/cuda_dib_render
python build.py install
python test-all.py \
--g_model_dir ./checkpoints/g_model.pth \
--svfolder ./prediction \
--data_folder ./dataset \
--filelist ./test_list.txt
To get the evaluation IOU, please first download the tool Binvox and install it's dependencies,
Voxelize the prediction using Binvox
python voxelization.py --folder ./prediction
To evaluate the IOU, please first install binvox-rw-py following this Link, then run the script
python check_iou.py --folder ./prediction --gt_folder ./dataset
To get the boundary F-score, please run the following script
python check_chamfer.py --folder ./prediction --gt_folder ./dataset
If you use the code, please cite our paper:
@inproceedings{chen2019dibrender,
title={Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer},
author={Wenzheng Chen and Jun Gao and Huan Ling and Edward Smith and Jaakko Lehtinen and Alec Jacobson and Sanja Fidler},
booktitle={Advances In Neural Information Processing Systems},
year={2019}
}