/tico

Torch-based internal coordinate geometry optimization

Primary LanguagePythonMIT LicenseMIT

tico

Torch-based internal coordinate geometry optimization.

ci coverage license


The tico framework provides utilities for optimizing the geometry of molecules in internal coordinates. It is heavily based off of geomeTRIC, but aims to improve the performance using PyTorch, and bypassing some of the QA checks. For a more robust option, consider using geomeTRIC instead.

Because tico is heavily based off of geomeTRIC, please consider citing the original package if you use tico in your work:

@article{wang2016geometry,
  title={Geometry optimization made simple with translation and rotation coordinates},
  author={Wang, Lee-Ping and Song, Chenchen},
  journal={The Journal of chemical physics},
  volume={144},
  number={21},
  year={2016},
  publisher={AIP Publishing}
}

Installation

This package can be installed using conda (or mamba, a faster version of conda):

mamba install -c conda-forge tico

Getting Started

To geometry of a molecule can be optimized using the tico.opt.optimize function. It takes as input and initial set of cartesian coordinates, and a function that returns the energy and gradient of the molecule at a given set of coordinates.

Creating a molecule to optimize can be easily done using the openff.toolkit package:

import openff.toolkit
import torch

ff = openff.toolkit.ForceField("openff_unconstrained-2.1.0.offxml")

mol = openff.toolkit.Molecule.from_smiles("CCO")
mol.generate_conformers(n_conformers=1)

bond_idxs = torch.tensor(
    [[bond.atom1_index, bond.atom2_index] for bond in mol.bonds]
)
coords = torch.tensor(mol.conformers[0].m_as("bohr")).double()

An internal coordinate representation of the molecule can then be created using the helpers in the tico.ic module:

import tico.ic

# Create a primitive internal coordinates representation
ic = tico.ic.RIC.from_coords(coords, bond_idxs)
# Or a usually more efficient delocalized internal coordinates representation
ic = tico.ic.DLC.from_coords(coords, bond_idxs)

# If using the delocalized internal coordinates, optional constraints can be added.
# For example, to fix the distance between atoms 0 and 1 to 2.0 bohr:
constr = {tico.ic.ICType.DISTANCE: (torch.tensor([[0, 1]]), torch.tensor([2.0]))}
ic = tico.ic.DLC.from_coords(coords, bond_idxs, constr)

An example energy function that uses OpenMM may look like:

import openmm
import openmm.unit
import torch

system = ff.create_openmm_system(mol.to_topology())

context = openmm.Context(
    system,
    openmm.VerletIntegrator(1.0),
    openmm.Platform.getPlatformByName("Reference"),
)

def energy_fn(c):
    c = c.numpy().reshape(-1, 3) * openmm.unit.bohr
    context.setPositions(c)

    state = context.getState(getEnergy=True, getForces=True)

    energy = state.getPotentialEnergy() / openmm.unit.AVOGADRO_CONSTANT_NA
    gradient = -state.getForces(asNumpy=True) / openmm.unit.AVOGADRO_CONSTANT_NA

    energy = energy.value_in_unit(openmm.unit.hartree)
    gradient = gradient.value_in_unit(openmm.unit.hartree / openmm.unit.bohr).flatten()

    return torch.tensor(energy), torch.tensor(gradient)

The optimization can then be performed using:

import tico.opt

atomic_nums = torch.tensor([atom.atomic_number for atom in mol.atoms])

history, converged = tico.opt.optimize(coords, ic, energy_fn, atomic_nums)
assert converged

coords_final = history[-1].coords

The tico.td module contains additional helpers for performing torsion scans around given bonds:

import tico.td

# scan using torsiondrive with wavefront propagation
params = tico.td.Params(driver=tico.td.WFP())
# OR for faster (but likely higher energy structures), just do a linear scan
params = tico.td.Params(driver=tico.td.Simple())

results = tico.td.torsion_drive(
    coords, bond_idxs, dihedral, energy_fn, atomic_nums, params
)

The energies of the torsion scan can be easily plotted:

angles = sorted(results)
energies = [results[angle][1] for angle in angles]

from matplotlib import pyplot

pyplot.plot(angles, energies)
pyplot.xlabel("Angle [deg]")
pyplot.ylabel("Energy [Eh]")
pyplot.legend()
pyplot.show()

and the optimized geometries can be extracted:

import openff.units

mol._conformers = [
    coords.numpy() * openff.units.unit.bohr for coords, _ in results.values()
]
mol.to_file("td.xyz", "XYZ")

License

The main package is release under the MIT license. Parts of the package are largely inspired by geomeTRIC, see the LICENSE-3RD-PARTY file for the license of the original code.