/3D-Gaussian-Splatting

Pytorch 3D Gaussian Splatting implemented by "WangFeng18"

Primary LanguagePythonMIT LicenseMIT

3d-Gaussian-Splatting

An unofficial Implementation of 3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH 2023].

We implement the 3d gaussian splatting methods through PyTorch with CUDA extensions, including the global culling, tile-based culling and rendering forward/backward codes.

Work in progress.

Update

  • 6/26/2023 Fix bugs of SSIM criterion, PSNR is improved from 24.28 to 24.85 (Garden Scene)
  • 6/26/2023 Accelerate Training Speed from avg 4 it/s to 13 it/s, by (1) replacing part of atomicAdd by warp reduction primitive (2) fixing bugs for SSIM functions. The training costs 9 minutes for 7k iterations on Garden scene.
Scene PSNR from paper PSNR from this repo Rendering Speed (official) Rendering Speed (Ours)
Garden 25.82(5k) 24.91 (7k) 160 FPS (avg MIPNeRF360) 60 FPS
Garden 25.82(5k) 25.70 (7k) 160 FPS (avg MIPNeRF360) 25 FPS
demo.mp4

QuickStart

Install CUDA Extensions

# compile CUDA extension
pip install -e ./

Data Preparation

Put the colmap output in this folder, e.g., colmap_garden/sparse/0/, as well as the images.

Traning

python train.py --exp garden --grad_thresh 0.000004 --debug 1 --ssim_weight 0.1 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --split_thresh 0.08 # PSNR 24.75 SSIM 71.95 FPS 70 N_Gaussians 376467
python train.py --exp garden --grad_thresh 0.000004 --debug 1 --ssim_weight 0.1 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 # PSNR 25.03 SSIM 0.7541 FPS 40 N_GAUSSIANS 933918 
python train.py --exp garden --grad_thresh 0.000002 --debug 1 --ssim_weight 0.1 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --split_thresh 0.08 # PSNR 24.91 SSIM 73.18 FPS 64 N_GAUSSIANS 506627 GOOD

python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 # PSNR 25.55 SSIM 79.83 N_GAUSSIANS 2418528 FPS 24.68

CUDA_VISIBLE_DEVICES=3 python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 # PSNR 25.5586 SSIM 80.10 FPS 25.30 N_GAUSSIANS 2401413

python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 --lr_factor_for_scale 0.2 --lr_factor_for_quat 10 --split_thresh 0.05 #PSNR 24.896 SSIM 76.55 FPS 65 N_GAUSSIANS 765932

python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 --lr_factor_for_quat 10 # PSNR 25.6906 SSIM 80.66 FPS 24.68

python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 --lr_factor_for_scale 0.5 --lr_factor_for_quat 10 --split_thresh 0.05 # PSNR 25.3769 SSIM 0.7902 FPS 41.3186

CUDA_VISIBLE_DEVICES=3 python train.py --exp garden2 --grad_thresh 0.000004 --debug 1 --ssim_weight 0.2 --lr 0.002 --use_sh_coeff 0 --grad_accum_method mean --grad_accum_iters 300 --adaptive_control_end_iter 3000 --opa_init_value 0.05 --lr_factor_for_opa 20 --lr_factor_for_quat 20 # PSNR 25.7021 SSIM 0.8052 FPS 25.3567

Rendering With a GUI

python train.py --ckpt ckpt.pth --gui 1 --test 1

The GUI is based on Viser and written by ZiLong Chen.

The transforms folder are from Viser

Link

Another good implementation for 3D gaussian splatting, by Zilong Chen