/pytorch-cifar

95.16% on CIFAR10 with PyTorch

Primary LanguagePythonMIT LicenseMIT

Train CIFAR10 with PyTorch

Many thanks for kuangliu/pytorch-cifar, akamaster/pytorch_resnet_cifar10, HtutLynn in kuangliu/issues/45 !

Prerequisites

  • Python 3.6+
  • PyTorch 1.0+

Accuracy

Model Acc.
VGG16 92.64%
ResNet18 93.02%
ResNet50 93.62%
ResNet101 93.75%
RegNetX_200MF 94.24%
RegNetY_400MF 94.29%
MobileNetV2 94.43%
ResNeXt29(32x4d) 94.73%
ResNeXt29(2x64d) 94.82%
DenseNet121 95.04%
PreActResNet18 95.11%
DPN92 95.16%

Novel features

  • [Add resnet 20,32,56,110,1202]
  • [Auto learning rate adjustment]
  • [Save log]
  • [Save to tensorboard]
  • [Select network in arguments]
  • [Support more datasets]

Training

Train from scratch

$ python main.py

Resume training

$ python main.py --resume --checkpoint '/path/to/your/checkpoint'