A small Arduino library for GSM modules, that just works.
If you like TinyGSM - give it a star, or fork it and contribute!
Arduino Client interface support
This library is easy to integrate with lots of sketches which use Ethernet or WiFi. PubSubClient (MQTT), Blynk, HTTP Client and File Download examples are provided.
TinyGSM is tiny
The complete WebClient example for Arduino Uno (via Software Serial) takes little resources:
Sketch uses 15022 bytes (46%) of program storage space. Maximum is 32256 bytes.
Global variables use 574 bytes (28%) of dynamic memory, leaving 1474 bytes for local variables. Maximum is 2048 bytes.
Arduino GSM library uses 15868 bytes (49%) of Flash and 1113 bytes (54%) of RAM in a similar scenario. TinyGSM also pulls data gently from the modem (whenever possible), so it can operate on very little RAM. Now, you have more space for your experiments.
Supported modems
- SIMCom SIM800 series (SIM800A, SIM800C, SIM800L, SIM800H, SIM808, SIM868)
- SIMCom SIM900 series (SIM900A, SIM900D, SIM908, SIM968)
- SIMCom WCDMA/HSPA/HSPA+ Modules (SIM5360, SIM5320, SIM5300E, SIM5300E/A)
- SIMCom LTE Modules (SIM7100E, SIM7500E, SIM7500A, SIM7600C, SIM7600E)
- SIMCom SIM7000E/A/G CAT-M1/NB-IoT Module
- AI-Thinker A6, A6C, A7, A20
- ESP8266 (AT commands interface, similar to GSM modems)
- Digi XBee WiFi and Cellular (using XBee command mode)
- Neoway M590
- u-blox 2G, 3G, 4G, and LTE Cat1 Cellular Modems (many modules including LEON-G100, LISA-U2xx, SARA-G3xx, SARA-U2xx, TOBY-L2xx, LARA-R2xx, MPCI-L2xx)
- u-blox LTE-M/NB-IoT Modems (SARA-R4xx, SARA-N4xx, but NOT SARA-N2xx)
- Sequans Monarch LTE Cat M1/NB1 (VZM20Q)
- Quectel BG96
- Quectel M95
- Quectel MC60 (alpha)
Supported boards/modules
- Arduino MKR GSM 1400
- GPRSbee
- Microduino GSM
- Adafruit FONA (Mini Cellular GSM Breakout)
- Adafruit FONA 800/808 Shield
- Industruino GSM
- RAK WisLTE (alpha)
- ... other modules, based on supported modems. Some boards require special configuration.
More modems may be supported later:
- Quectel M10, UG95
- SIMCom SIM7020
- Telit GL865
- ZTE MG2639
- Hi-Link HLK-RM04
Watch this repo for new updates! And of course, contributions are welcome ;)
Features
Data connections
- TCP (HTTP, MQTT, Blynk, ...)
- ALL modules support TCP connections
- Most modules support multiple simultaneous connections:
- A6/A7 - 8
- ESP8266 - 5
- Neoway M590 - 2
- Quectel BG96 - 12
- Quectel M95 - 6
- Quectel MC60/MC60E - 6
- Sequans Monarch - 6
- SIM 800/900 - 5
- SIM 5360/5320/5300/7100 - 10
- SIM7000 - 8
- SIM 7500/7600/7800 - 10
- u-blox 2G/3G - 7
- u-blox SARA R4/N4 - 7
- Digi XBee - only 1 connection supported!
- UDP
- Not yet supported on any module, though it may be some day
- SSL/TLS (HTTPS)
- Supported on:
- SIM800, u-Blox, XBee cellular, ESP8266, and Sequans Monarch
- Note: only some device models or firmware revisions have this feature (SIM8xx R14.18, A7, etc.)
- Not yet supported on:
- Quectel modems, SIM7000, SIM 5360/5320/7100, SIM 7500/7600/7800
- Not possible on:
- SIM900, A6/A7, Neoway M590, XBee WiFi
- Like TCP, most modules support simultaneous connections
- TCP and SSL connections can usually be mixed up to the total number of possible connections
- Supported on:
USSD
- Sending USSD requests and decoding 7,8,16-bit responses
- Supported on:
- All SIMCom modems, Quectel modems, most u-blox
- Not possible on:
- XBee, u-blox SARA R4/N4, ESP8266 (obviously)
- Supported on:
SMS
- Only sending SMS is supported, not receiving
- Supported on all cellular modules
Voice Calls
- Supported on:
- SIM800/SIM900, A6/A7, Quectel modems, u-blox
- Not yet supported on:
- SIM7000, SIM5360/5320/7100, SIM7500/7600/7800, VZM20Q (Monarch)
- Not possible on:
- XBee (any type), u-blox SARA R4/N4, Neoway M590, ESP8266 (obviously)
- Functions:
- Dial, hangup
- DTMF sending
Location
- GPS/GNSS
- SIM808, SIM7000, SIM7500/7600/7800, BG96, u-blox
- NOTE: u-blox chips do NOT have embedded GPS - this function only works if a secondary GPS is connected to primary cellular chip over I2C
- GSM location service
- SIM800, SIM7000, Quectel, u-blox
Credits
- Primary Authors/Contributors:
- SIM7000:
- Sequans Monarch:
- Quectel M9C60
- Quectel M95
- Other Contributors:
Getting Started
First Steps
- Using your phone: - Disable PIN code on the SIM card - Check your balance - Check that APN, User, Pass are correct and you have internet
- Ensure the SIM card is correctly inserted into the module
- Ensure that GSM antenna is firmly attached
- Ensure that you have a stable power supply to the module of at least 2A.
- Check if serial connection is working (Hardware Serial is recommended)
Send an
AT
command using this sketch - Try out the WebClient example
Writing your own code
The general flow of your code should be:
- Define the module that you are using (choose one and only one)
- ie,
#define TINY_GSM_MODEM_SIM800
- ie,
- Included TinyGSM
#include <TinyGsmClient.h>
- Create a TinyGSM modem instance
TinyGsm modem(SerialAT);
- Create one or more TinyGSM client instances
- For a single connection, use
TinyGsmClient client(modem);
orTinyGsmClientSecure client(modem);
(on supported modules)
- For multiple connections (on supported modules) use:
TinyGsmClient clientX(modem, 0);
,TinyGsmClient clientY(modem, 1);
, etc orTinyGsmClientSecure clientX(modem, 0);
,TinyGsmClientSecure clientY(modem, 1);
, etc
- Secure and insecure clients can usually be mixed when using multiple connections.
- The total number of connections possible varies by module
- For a single connection, use
- Begin your serial communication and set all your pins as required to power your module and bring it to full functionality.
- The examples attempt to guess the module's baud rate. In working code, you should use a set baud.
- Wait for the module to be ready (could be as much as 6s, depending on the module)
- Initialize the modem
modem.init()
ormodem.restart()
- restart generally takes longer than init but ensures the module doesn't have lingering connections
- Unlock your SIM, if necessary:
modem.simUnlock(GSM_PIN)
- If using WiFi, specify your SSID information:
modem.networkConnect(wifiSSID, wifiPass)
- Network registration should be automatic on cellular modules
- Wait for network registration to be successful
modem.waitForNetwork(600000L)
- If using cellular, establish the GPRS or EPS data connection after your are successfully registered on the network
modem.gprsConnect(apn, gprsUser, gprsPass)
(or simplymodem.gprsConnect(apn)
)- The same command is used for both GPRS or EPS connection
- If using a Digi brand cellular XBee, you must specify your GPRS/EPS connection information before waiting for the network. This is true ONLY for Digi cellular XBees! For all other cellular modules, use the GPRS connect function after network registration.
- Connect the TCP or SSL client
client.connect(server, port)
- Send out your data.
If you have any issues:
- Read the whole README (you're looking at it!), particularly the troubleshooting section below.
- Some boards require special configuration.
- Try running the Diagnostics sketch
- Check for highlighted topics here
- If you have a question, please post it in our Gitter chat
How does it work?
Many GSM modems, WiFi and radio modules can be controlled by sending AT commands over Serial. TinyGSM knows which commands to send, and how to handle AT responses, and wraps that into standard Arduino Client interface.
API Reference
For GPRS data streams, this library provides the standard Arduino Client interface. For additional functions, please refer to this example sketch
Troubleshooting
Ensure stable data & power connection
Most modules require as much as 2A to properly connect to the network. This is 4x what a "standard" USB will supply! Improving the power supply actually solves stability problems in many cases!
- Read about powering your module.
- Keep your wires as short as possible
- Consider soldering them for a stable connection
- Do not put your wires next to noisy signal sources (buck converters, antennas, oscillators etc.)
- If everything else seems to be working but you are unable to connect to the network, check your power supply!
Broken initial configuration
Sometimes (especially if you played with AT commands), your module configuration may become invalid. This may result in problems such as:
- Can't connect to the GPRS network
- Can't connect to the server
- Sent/received data contains invalid bytes
- etc.
To return module to Factory Defaults, use this sketch: File -> Examples -> TinyGSM -> tools -> FactoryReset
In some cases, you may need to set an initial APN to connect to the cellular network.
Try using the gprsConnect(APN)
function to set an initial APN if you are unable to register on the network.
You may need set the APN again after registering.
(In most cases, you should set the APN after registration.)
Diagnostics sketch
Use this sketch to help diagnose SIM card and GPRS connection issues: File -> Examples -> TinyGSM -> tools -> Diagnostics
If the diagnostics fail, uncomment this line to output some debugging comments from the library:
#define TINY_GSM_DEBUG SerialMon
In any custom code, TINY_GSM_DEBUG
must be defined before including the TinyGSM library.
If you are unable to see any obvious errors in the library debugging, use StreamDebugger to copy the entire AT command sequence to the main serial port. In the diagnostics example, simply uncomment the line:
#define DUMP_AT_COMMANDS
In custom code, you can add this snippit:
#ifdef DUMP_AT_COMMANDS
#include <StreamDebugger.h>
StreamDebugger debugger(SerialAT, SerialMon);
TinyGsm modem(debugger);
#else
TinyGsm modem(SerialAT);
#endif
Web request formatting problems - "but it works with PostMan"
This library opens a TCP (or SSL) connection to a server. In the OSI model, that's layer 4 (or 5 for SSL). HTTP (GET/POST), MQTT, and most of the other functions you probably want to use live up at layer 7. This means that you need to either manually code the top layer or use another library (like HTTPClient or PubSubClient) to do it for you. Tools like PostMan also show layer 7, not layer 4/5 like TinyGSM. If you are successfully connecting to a server, but getting responses of "bad request" (or no response), the issue is probably your formatting. Here are some tips for writing layer 7 (particularly HTTP request) manually:
- Look at the "WebClient" example
- Make sure you are including all required headers.
- If you are testing with PostMan, make sure you un-hide and look at the "auto-generated" headers; you'll probably be surprised by how many of them there are.
- Use
client.print("...")
, orclient.write(buf, #)
, or evenclient.write(String("..."))
, notclient.write("...")
to help prevent text being sent out one character at a time (typewriter style) - Enclose the entirety of each header or line within a single string or print statement
- use
instead ofclient.print(String("GET ") + resource + " HTTP/1.1\r\n");
client.print("GET "); client.print(resource); client.println(" HTTP/1.1")
- Make sure there is one entirely blank line between the last header and the content of any POST request.
- Add two lines to the last header
client.print("....\r\n\r\n")
or put in an extraclient.println()
- This is an HTTP requirement and is really easy to miss.
- Add two lines to the last header
SoftwareSerial problems
When using SoftwareSerial
(on Uno, Nano, etc), the speed 115200 may not work.
Try selecting 57600, 38400, or even lower - the one that works best for you.
In some cases 9600 is unstable, but using 38400 helps, etc.
Be sure to set correct TX/RX pins in the sketch. Please note that not every Arduino pin can serve as TX or RX pin.
Read more about SoftSerial options and configuration here and here.
ESP32 Notes
HardwareSerial
When using ESP32 HardwareSerial
, you may need to specify additional parameters to the .begin()
call.
Please refer to this comment.
HttpClient
You will not be able to compile the HttpClient or HttpsClient examples with ESP32 core 1.0.2. Upgrade to 1.0.3, downgrade to version 1.0.1 or use the WebClient example.
SAMD21
When using SAMD21-based boards, you may need to use a sercom uart port instead of Serial1
.
Please refer to this comment.
Goouuu Tech IOT-GA6 vs AI-Thinker A6 confusion
It turns out that Goouuu Tech IOT-GA6 is not the same as AI-Thinker A6. Unfortunately IOT-GA6 is not supported out of the box yet. There are some hints that IOT-GA6 firmware may be updated to match A6... See this topic.
License
This project is released under The GNU Lesser General Public License (LGPL-3.0)