Authors: Skuratovich Aliaksandr, Tikhonov Maksim
Date: 25.4.2022
src/CNN/
: implementation of a Binary clasification based on a Convolutional Neural Networksrc/MAP/
: Maximum A-posteriori Classifier based on the Bayesian Gaussian Mixture models.src/NEURAL_PCA/
: Binary classification using feed-forward neural network wirh preprocessing and feature extraction with Principal Component Analysis.src/models/
: Directory with ready models.src/main.py
: The main script.src/hyperparams.yaml
: hyperparameters to perform the training and/or evaluating.dataset/
: Small dataset with.wav
and.png
files to train on.
NOTE: your version of python has to be >= 3.10.0
pip install -r requirements.txt
python3 main.py hyperparams.yaml
Here are the parameters from hyperparams.yaml
:
default: &default
train: False # Train or used pretrained model
eval: True # evaluation is set create reports with the scores for each file from the test set.
model_dir: ./models # Directory to load/store the trained model
dataset_dir: ./dataset # Path to a dataset to train on.
eval_dir: ./tests # Directory with the test set.
GPU: 0 # If you train on the GPU machine, change this cell
root_dir: .
wandb_entity: <your_wandb_username_here>
CNN:
<<: *default
train: False
eval: False
model_name: CNNKyticko.pt
MAP:
<<: *default
dataset_dir: {non_target: ./dataset/non_target_train, target: ./dataset/target_train}
model_name: {target: bgmm_target.pkl, non_target: bgmm_non_target.pkl}
dev_dataset: {non_target: ./dataset/non_target_dev, target: ./dataset/target_dev}
Neural_PCA:
<<: *default
model_name: NeuralPCA.pt
u_mean: ./NEURAL_PCA/u_mean.npy
- image augmentations
- audio augmentations
- make a file/class/something with BGMM training
- add requirements.txt
- train cnn classifier
- create eval pipeline. Probably add script for creation
.csv
files to train neural networks. - create train pipeline
- test everything
- add more info on how to repeat the experiment
- start the next school project :-(