/RetinaNet_Tensorflow

Focal Loss for Dense Object Detection.

Primary LanguageJupyter NotebookMIT LicenseMIT

Focal Loss for Dense Object Detection

Abstract

This is a tensorflow re-implementation of Focal Loss for Dense Object Detection, and it is completed by YangXue.

1

Performance

Model Backbone Training data Val data mAP Train Schedule GPU Image/GPU Configuration File
Faster-RCNN ResNet50_v1 600 VOC07 trainval VOC07 test 73.09 - 1X GTX 1080Ti 1 -
FPN ResNet50_v1 600 VOC07 trainval VOC07 test 74.26 - 1X GTX 1080Ti 1 -
RetinaNet ResNet50_v1 600 VOC07 trainval VOC07 test 73.16 - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc07_v3.py
RetinaNet ResNet50_v1d 600 VOC07 trainval VOC07 test 73.26 - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc07_v4.py
RetinaNet ResNet50_v1d 600 VOC07+12 trainval VOC07 test 79.66 - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v1.py
RetinaNet ResNet101_v1d 600 VOC07+12 trainval VOC07 test 81.69 - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v4.py
RetinaNet ResNet101_v1d 800 VOC07+12 trainval VOC07 test 80.69 - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v3.py
RetinaNet ResNet50_v1 600 COCO train2017 COCO val2017 (coco minival) 33.4 1x 8X GeForce RTX 2080 Ti 1 cfgs_res50_coco_1x_v4.py

My Development Environment

1、python3.5 (anaconda recommend)
2、cuda9.0
3、opencv(cv2)
4、tfplot (optional)
5、tensorflow >= 1.12

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、Or you can choose to use a better backbone, refer to gluon2TF. Pretrain Model Link, password: 5ht9.

Trained weights

Select a configuration file in the folder ($PATH_ROOT/libs/configs/) and copy its contents into cfgs.py, then download the corresponding weights.

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py     
(3) Add data_name to line 76 of $PATH_ROOT/data/io/read_tfrecord.py 

2、make tfrecord

cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord_coco.py --VOC_dir='/PATH/TO/JSON/FILE/' 
                                        --save_name='train' 
                                        --dataset='coco'

3、multi-gpu train

cd $PATH_ROOT/tools
python multi_gpu_train.py

Eval

cd $PATH_ROOT/tools
python eval_coco.py --eval_data='/PATH/TO/IMAGES/'  
                    --eval_gt='/PATH/TO/TEST/ANNOTATION/'
                    --GPU='0'
                    
cd $PATH_ROOT/tools
python eval_coco_multiprocessing.py --eval_data='/PATH/TO/IMAGES/'  
                                    --eval_gt='/PATH/TO/TEST/ANNOTATION/'
                                    --gpu_ids='0,1,2,3,4,5,6,7'           

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet