/ML-Decision-Trees-from-scratch

Machine Learning - Decision tree model implementation from scratch

Primary LanguagePython

Decision Trees and Random Forests ⭐🌳⭐

Directory Structure: πŸ“

β”‚   ADABoost_test.py
β”‚   assignment_q4_subjective_answers.md
β”‚   Bagging_test.py
β”‚   estate-experiments.py
β”‚   experiments.py
β”‚   iris-experiments.py
β”‚   Makefile
β”‚   metrics.py
β”‚   Random_forest.py
β”‚   random_forest_iris.py
β”‚   README.md
β”‚   realestate.csv
β”‚   usage.py
β”‚
β”œβ”€β”€β”€ensemble
β”‚       ADABoost.py
β”‚       bagging.py
β”‚       __init__.py
β”‚
β”œβ”€β”€β”€images
β”‚
└───tree
        base.py
        randomForest.py
        utils.py
        __init__.py

Instructions to run πŸƒ

make help make decision_tree make iris make real_estate make experiments make adaboost make bagging make random_forest make random_forest_iris

Time and Sampling plots: ⏰

DIDO Training

alt text

DIDO Prediction

alt text

DIRO Training

alt text

DIRO Prediction

alt text

RIDO Training

alt text

RIDO Prediction

alt text

RIRO Training

alt text

RIRO Prediction

alt text

Adaboost: πŸ’₯

Decision Tree Estimator Plot

alt text

All Estimators Individual Decision Surface

alt text

Combined Decision Surfaces

alt text

  • IRIS Dataset

Decision Tree Estimator PLot

alt text

All Estimators Individual Decision Surface

alt text

Combined Decision Surfaces

alt text

Bagging: πŸ‘Š

Decision Tree Estimator Plot

alt text

All Estimators Individual Decision Surface

alt text

Random Forest: 🌳🌳

Decision Tree Estimator Structure

alt text

All Estimators Individual Decision Surface

alt text

Combined Decision Surfaces

alt text