/lazy-collections

Collection of fast and lazy operations

Primary LanguageTypeScriptMIT LicenseMIT

Lazy Collections

Fast and lazy collection operations.


Working with methods like .map(), .filter() and .reduce() is nice, however they create new arrays and everything is eagerly done before going to the next step.

This is where lazy collections come in, under the hood we use iterators and async iterators so that your data flows like a stream to have the optimal speed.

All functions should work with both iterator and asyncIterator, if one of the functions uses an asyncIterator (for example when you introduce delay(100)), don't forget to await the result!

let program = pipe(
  map(x => x * 2),
  filter(x => x % 4 === 0),
  filter(x => x % 100 === 0),
  filter(x => x % 400 === 0),
  toArray
);

program(range(0, 1000000));

Table of Contents

Benchmark

⚠️ This is not a scientific benchmark, there are flaws with this. This is just meant to showcase the power of lazy-collections.

  Lazy Eager  
Duration 2.19ms 1.29s 589x faster
Memory heapTotal 9.48 MB 297.96 MB 31x less memory
Memory heapUsed 5.89 MB 265.46 MB 45x less memory

Memory data collected using: http://nodejs.org/api/process.html#process_process_memoryusage

import {
  pipe,
  range,
  filter,
  takeWhile,
  slice,
  toArray,
} from 'lazy-collections';

// Lazy example
let program = pipe(
  range(0, 10_000_000),
  filter(x => x % 100 === 0),
  filter(x => x % 4 === 0),
  filter(x => x % 400 === 0),
  takeWhile(x => x < 1_000),
  slice(0, 1_000),
  toArray
);

program(); // [ 0, 400, 800 ]
// Eager example
function program() {
  return (
    // Equivalent of the range()
    [...new Array(10_000_000).keys()]
      .filter(x => x % 100 === 0)
      .filter(x => x % 4 === 0)
      .filter(x => x % 400 === 0)

      // Equivalent of the takeWhile
      .reduce((acc, current) => {
        return current < 1_000 ? (acc.push(current), acc) : acc;
      }, [])
      .slice(0, 1_000)
  );
}

program(); // [ 0, 400, 800 ]

This is actually a stupid non-real-world example. However, it is way more efficient at doing things. That said, yes you can optimize the eager example way more if you want to. You can combine the filter / reduce / .... However, what I want to achieve is that we can have separated logic in different filter or map steps without thinking about performance bottlenecks.

API

Composing functions

compose

Table of contents

We can use compose to compose functions together and return a new function which combines all other functions.

import { compose } from 'lazy-collections';

// Create a program (or a combination of functions)
let program = compose(fn1, fn2, fn3);

program();
// fn1(fn2(fn3()))

pipe

Table of contents

We can use pipe to compose functions together and return a new function which combines all other functions.

The difference between pipe and compose is the order of execution of the functions.

import { pipe } from 'lazy-collections';

// Create a program (or a combination of functions)
let program = pipe(fn1, fn2, fn3);

program();
// fn3(fn2(fn1()))

Known array functions

concat

Table of contents

Concat multiple iterators or arrays into a single iterator.

import { pipe, concat, toArray } from 'lazy-collections';

let program = pipe(
  concat([0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]),
  toArray
);

program();
// [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

every

Table of contents

Should return true if all values match the predicate.

import { pipe, every } from 'lazy-collections';

let program = pipe(every(x => x === 2));

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// false

filter

Table of contents

Filter out values that do not meet the condition.

import { pipe, filter, toArray } from 'lazy-collections';

let program = pipe(
  filter(x => x % 2 === 0),
  toArray
);

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// [ 2, 4, 6, 8, 10 ]

find

Table of contents

Find a value based on the given predicate.

import { pipe, find } from 'lazy-collections';

let program = pipe(find(x => x === 2));

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// 2

findIndex

Table of contents

Find an index based on the given predicate.

import { pipe, findIndex } from 'lazy-collections';

let program = pipe(findIndex(x => x === 2));

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// 2

join

Table of contents

Join an array or iterator of strings.

import { pipe, join } from 'lazy-collections';

let program = pipe(join());

program(['foo', 'bar', 'baz']);
// 'foo,bar,baz'

Optionally, you can join with a separator string:

import { pipe, join } from 'lazy-collections';

let program = pipe(join(' '));

program(['foo', 'bar', 'baz']);
// 'foo bar baz'

map

Table of contents

Map a value from A to B.

import { pipe, map, toArray } from 'lazy-collections';

let program = pipe(
  map(x => x * 2),
  toArray
);

program([1, 2, 3]);
// [ 2, 4, 6 ]

reduce

Table of contents

Reduce the data to a single value.

import { pipe, reduce } from 'lazy-collections';

let program = pipe(reduce((total, current) => total + current, 0));

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// 55

reverse

Table of contents

Reverses the iterator.

note: This is currently very slow because it has to go through the full iterator first!

import { pipe, reverse, toArray } from 'lazy-collections';

let program = pipe(range(0, 5), reverse, toArray);

program();
// [ 5, 4, 3, 2, 1, 0 ]

some

Table of contents

Should return true if some of the values match the predicate.

import { pipe, some } from 'lazy-collections';

let program = pipe(some(x => x === 2));

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// true

Math / Statistics

average

Table of contents

Alias: mean

Gets the average of number of values.

import { pipe, average, toArray } from 'lazy-collections';

let program = pipe(average);

program([6, 7, 8, 9, 10]);
// 8

max

Table of contents

Find the maximum value of the given list

import { pipe, range, max } from 'lazy-collections';

let program = pipe(range(0, 5), max);

program();
// 5

min

Table of contents

Find the minimum value of the given list

import { pipe, range, min } from 'lazy-collections';

let program = pipe(range(5, 10), min);

program();
// 5

sum

Table of contents

Should sum an array or iterator.

import { pipe, sum } from 'lazy-collections';

let program = pipe(sum);

program([1, 1, 2, 3, 2, 4, 5]);
// 18

Utilities

chunk

Table of contents

Chunk the data into pieces of a certain size.

import { pipe, chunk, toArray } from 'lazy-collections';

let program = pipe(chunk(3), toArray);

program([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ], [ 10 ] ];

compact

Table of contents

Filters out all falsey values.

import { pipe, compact, toArray } from 'lazy-collections';

let program = pipe(compact, toArray);

program([0, 1, true, false, null, undefined, '', 'test', NaN]);
// [ 1, true, 'test' ];

delay

Table of contents

Will make he whole program async. It will add a delay of x milliseconds when an item goes through the stream.

import { pipe, range, delay, map, toArray } from 'lazy-collections';

let program = pipe(
  range(0, 4),
  delay(5000), // 5 seconds
  map(() => new Date().toLocaleTimeString()),
  toArray
);

await program();
// [ '10:00:00', '10:00:05', '10:00:10', '10:00:15', '10:00:20' ];

flatten

Table of contents

By default we will flatten recursively deep.

import { pipe, flatten, toArray } from 'lazy-collections';

let program = pipe(flatten(), toArray);

program([1, 2, 3, [4, 5, 6, [7, 8], 9, 10]]);
// [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

But you can also just flatten shallowly

import { pipe, flatten, toArray } from 'lazy-collections';

let program = pipe(flatten({ shallow: true }), toArray);

program([1, 2, 3, [4, 5, 6, [7, 8], 9, 10]]);
// [ 1, 2, 3, 4, 5, 6, [ 7, 8 ], 9, 10 ]

generate

Table of contents

Generate accepts a function that function will be called over and over again. Don't forget to combine this with a function that ensures that the data stream will end. For example, you can use take, takeWhile or slice.

import { pipe, generate, take, toArray } from 'lazy-collections';

let program = pipe(generate(Math.random), take(3), toArray);

program();
// [ 0.7495421596380878, 0.09819118640607383, 0.2453718461872143 ]

groupBy

Table of contents

Groups the iterator to an object, using the keySelector function.

import { pipe, groupBy, range } from 'lazy-collections';

// A function that will map the value to the nearest multitude. In this example
// we will map values to the nearest multitude of 5. So that we can group by
// this value.
function snap(multitude: number, value: number) {
  return Math.ceil(value / multitude) * multitude;
}

let program = pipe(
  range(0, 10),
  groupBy((x: number) => snap(5, x))
);

program();
// {
//   0: [0],
//   5: [1, 2, 3, 4, 5],
//   10: [6, 7, 8, 9, 10],
// }

head

Table of contents

Alias: first

Gets the first value of the array / iterator. Returns undefined if there is no value.

import { pipe, chunk, toArray } from 'lazy-collections';

let program = pipe(head);

program([6, 7, 8, 9, 10]);
// 6

partition

Table of contents

Partition data into 2 groups based on the predicate.

import { pipe, partition, range, toArray } from 'lazy-collections';

let program = pipe(
  range(1, 4),
  partition(x => x % 2 !== 0),
  toArray
);

program();
// [ [ 1, 3 ], [ 2, 4 ] ]

range

Table of contents

Create a range of data using a lowerbound, upperbound and step. The step is optional and defaults to 1.

import { pipe, range, toArray } from 'lazy-collections';

let program = pipe(range(5, 20, 5), toArray);

program();
// [ 5, 10, 15, 20 ]

skip

Table of contents

Allows you to skip X values of the input.

import { pipe, range, skip, toArray } from 'lazy-collections';

let program = pipe(range(0, 10), skip(3), toArray);

program();
// [ 3, 4, 5, 6, 7, 8, 9, 10 ]

slice

Table of contents

Slice a certain portion from your data set. It accepts a start index and an end index.

import { pipe, range, slice, toArray } from 'lazy-collections';

let program = pipe(range(0, 10), slice(3, 5), toArray);

program();
// [ 3, 4, 5 ]

// Without the slice this would have generated
// [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

take

Table of contents

Allows you to take X values of the input.

import { pipe, range, take, toArray } from 'lazy-collections';

let program = pipe(range(0, 10), take(3), toArray);

program();
// [ 1, 2, 3 ]

takeWhile

Table of contents

This is similar to take, but instead of a number as a value it takes a function as a condition.

import { pipe, range, takeWhile, toArray } from 'lazy-collections';

let program = pipe(
  range(0, 10),
  takeWhile(x => x < 5),
  toArray
);

program();
// [ 0, 1, 2, 3, 4 ]

tap

Table of contents

Allows you to tap into the stream, this way you can intercept each value.

import { pipe, range, tap, toArray } from 'lazy-collections';

let program = pipe(
  range(0, 5),
  tap(x => {
    console.log('x:', x);
  }),
  toArray
);

program();
// x: 0
// x: 1
// x: 2
// x: 3
// x: 4
// x: 5
// [ 0, 1, 2, 3, 4, 5 ]

toArray

Table of contents

Converts an array or an iterator to an actual array.

import { pipe, range, toArray } from 'lazy-collections';

let program = pipe(range(0, 10), toArray);

program();
// [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

unique

Table of contents

Make your data unique.

import { pipe, unique, toArray } from 'lazy-collections';

let program = pipe(unique, toArray);

program([1, 1, 2, 3, 2, 4, 5]);
// [ 1, 2, 3, 4, 5 ]

where

Table of contents

Filter out values based on the given properties.

import { pipe, where, range, map, where, toArray } from 'lazy-collections';

let program = pipe(
  range(15, 20),
  map(age => ({ age })),
  where({ age: 18 }),
  toArray
);

program();
// [ { age: 18 } ]

zip

Table of contents

Zips multiple arrays / iterators together.

import { pipe, zip, toArray } from 'lazy-collections';

let program = pipe(zip, toArray);

program([
  [0, 1, 2],
  ['A', 'B', 'C'],
]);
// [ [ 0, 'A' ], [ 1, 'B' ], [ 2, 'C' ] ]