/Hands-on-ML-Basic-to-Advance-

Full Machine learning Guide basic to advance

Primary LanguageJupyter Notebook

Master Machine learning

__________________________________________________________________________

Description

Topics

1.Extracting Data

  • Web scrapping - Tool used :->> Beautiful Soup

    which extract the data from web pages.

2.Visualization

  • Different types plots in Seaborn & Matplotlib

3. Feature selection

4. Basic concepts of statistic

A). Descriptive

B). Inferential

  • Probability(conditional, Bayes rule)
  • Mean ,Mode, varience, Standard Deviation
  • Different types of Didtributions Ex. Normal, Log normal, Binomial
  • co-varience
  • Center limit Theorem
  • Chebyshev's inequality
  • Pearson coeffiecent
  • spearman's Rank correlation
  • R square or adjusted R square
  • Hypothesis Testing (T-test ,chi-square test,Anova,Z test)
  • Type 1(alpha) & Type 2(Beta) Error
  • P value

summary

useful urls

licence

contact details